作者:郭思媛 (中南财经政法大学)
邮箱:siyuanguo2020@163.com
编者按: 本文主要整理自下文,特此致谢!
Source: Collischon, M., & Eberl, A. (2020). Let’s Talk About Fixed Effects: Let’s Talk About All the Good Things and the Bad Things. KZfSS Kölner Zeitschrift für Soziologie und Sozialpsychologie, 72(2), 289–299. Link, PDF, Google, -cited-.
1. 摘要
随着面板数据使用的普及,固定效应 (FE) 回归模型在社会学中的重要性日益突显。然而,在一些研究中,这些模型的潜在缺陷可能被忽视,对固定效应模型的常见批评也并不总是适用于其他方法的比较。
本文旨在概述线性固定效应模型及其应用研究中的潜在问题。本文将固定效应模型与经典的混合横截面数据模型 (POLS) 进行对比。本文认为,在大多数情况下,固定效应模型至少与 POLS 一样好。因此,鼓励学者尽可能采用固定效应模型。然而,固定效应模型的局限性也应该被认识和考虑。
2. 引言
面板数据的固定效应 (FE) 方法被广泛应用于社会学,相比于横截面方法具备一些优势。然而,在应用研究人员群体中,关于 FE 能做什么和不能做什么仍存在困惑和误解。本文通过讨论 FE 模型的优点和缺点,并将其与简单的普通最小二乘 (OLS) 模型进行比较来回答这个问题。以 Hill 等人 (2019) 对固定效应模型的批评为起点,对固定效应估计的利弊展开讨论。
我们将线性固定效应模型与经典的 POLS 模型进行对比,因为 POLS 模型提供了最容易理解的基准,可以用来评估线性固定效应模型。此外,越来越多的学者 (例如,Angrist and Pischke 2010; Breen 等 2018; Mood 2010) 建议即使对于二元变量,也使用线性模型,因为这些模型可以提供偏差小且一致的平均效应估计 (Wooldridge 2010) 。因此,本文研究线性固定效应模型。然而,线性固定效应模型的大多数特性也应适用于其他版本的固定效应估计 (例如,FE probit 或 logit) ,因为总体上使用固定效应的基本原理与具体版本无关。