阅读全文:论文复现:消费券的经济效果评估 (lianxh.cn)
作者:陈卓然 (中山大学)
邮箱:chenzhr25@mail2.sysu.edu.cn
编者按:本文整理自下文,特此致谢!
Source:Liu Q, Shen Q, Li Z, et al. Stimulating consumption at low budget: Evidence from a large-scale policy experiment amid the COVID-19 pandemic[J]. Management Science, 2021, 67(12): 7291-7307. -PDF-
1. 论文发现
本文通过 DID 的方法探究数字消费券对刺激消费产生的作用,文章发现 1 RMB 的政府补贴能够促进 3.4 到 5.8 RMB 的超额消费,并且这一影响在多轮消费券派发的过程中一直持续。
2. 政策背景
文章选择的政策实施地为浙江省的省会杭州,杭州是全国第一批实施数字消费券的城市之一。
在 2020 年 3 月 26 日,杭州市政府宣布将要在 3 月 27 日到 4 月 30 日分三轮发放价值 5 亿元的数字消费券,所有杭州的居民均有资格领取,每个人每一轮只能领取一次。
第一轮价值 200 万元的数字优惠券大礼包在 3 月 27 日 8:00 发放,每一个优惠券大礼包中包括五张单独的“花四十减十元”的代金券,即每一个优惠券大礼包中政府补贴 50 元,其有效期是从 3 月 27 日到 4 月 2 日,优惠券可以用于杭州几乎全部的实体商家。
第二轮优惠券大礼包是在 4 月 3 日 10:00 中发放,总价值为 150 万元,每个大礼包中包含三种不同的代金券,分别为 100-20、200-35 和 300-45,即每一个优惠券大礼包中政府补贴 100 元。
第三轮优惠券大礼包从 4 月 10 日的 10:00 发放,总价值也是 150 万元,其规则和第一轮的优惠券一致,每一个优惠券大礼包政府补贴 50 元。
3. 实证策略和数据
3.1 实证策略
文章的实证目标是评估短期政府优惠券项目的效果,作者拟采用 DID 的方法来评估获得消费券对于居民消费的影响。
文章面临的识别难题在于消费券并不是随机分配的,那些获得消费券的人可能和那些没有获得消费券的人之间本身便存在着很多消费行为上的差异。为了缓解类似的自选择问题,作者构建了一个控制组:在优惠券发放的当天,那些尝试去获得消费券但是最终失败的人群。
首先对于第一轮消费券发放,作者选取的处理前窗口期为 3 月 20 日至 3 月 26 日,处理后窗口期为 3 月 27 日至 4 月 2 日,其基本的计量模型如下:
yit=α0+α1Treati+α2Postt+α3Treati×Postt+γXit+εit(1)yit=α0+α1Treati+α2Postt+α3Treati×Postt+γXit+εit(1)
被解释变量 yityit 代表消费者 ii 在时期 tt (t=1t=1 表示处理前;t=2t=2 表示处理后) 中的花费,变量 TreatiTreati 是一个指示变量 (等于 1 代表处理组,等于 0 代表控制组),系数 α1α1 捕捉到处理组和控制组之间在消费上存在的基准差异,PosttPostt 是一个哑变量 (指示是否时期 tt 是消费券的兑换期),系数 α2α2 捕捉到时期之间花费存在的时间趋势,XitXit 表示其他可能影响花费的个体特征,如性别、年龄、2019 年 9 月到 2020 年 2 月之间的平均每月花费,以及在 3 月初 (3 月 1 日到 3 月 19 日) 的总花费,标准误在个体层面进行聚类。
作者们主要感兴趣的参数为 α3α3,这一参数估计了在消费券的兑换期中,处理组的消费者相较于控制组的消费者的平均过度花费。为了评估政策有效性,作者定义了一个效率比:
r=α3 amount of subsidy r= amount of subsidy α3
其中分母表示根据实际真正兑换的消费券来计算的平均每一份优惠券大礼包政府的平均补贴额度,比如说因为在第一轮中平均每人兑换 3.5 张代金券,因而平均补贴额度就是 35 元。从而效率比 rr 便捕捉了 1 元的政府补贴在拉动额外消费方面究竟多么有效,也就是这一政策的成本收益比,这一比例非常相似于 MPC (额外的收入中有多大的比例消费者会用于消费)。
作者进一步探究了消费券的跨期影响,具体而言,作者们追踪了一个在第一轮中收到但是在第二轮中没有收到消费券大礼包的人群组成的随机样本,并且作者们将观察期延长到第一轮消费券到期之后的一周 (4 月 3 日到 4 月 9 日),相应的控制组是那些在 3 月 27 日尝试获得消费券,但是一直到 4 月 9 日都没能获得消费券的人们组成的一个随机样本,回归模型如下所示:
yit=α0+α1Treati+α2Postt+α3Post2t+α4Treati× Post t+α5 Treat i× Post2t+γXit+εit(2)yit=α0+α1Treati+α2Postt+α3Post2t+α4Treati× Post t+α5 Treat i× Post2t+γXit+εit(2)
模型 1 和模型 2 中的主要差异在于我们加入一个后兑换期 (4 月 3 日到 4 月 9 日): Post2tPost2t。
这次我们感兴趣的参数为 α5α5,这一参数估计了优惠券的滞后效应,如果这一参数是负的,那么意味着相较于控制组而言,处理组会减少他们在消费券到期之后一周的花费。因此优惠券两期的净效应为 α4+α5α4+α5。