Logit和Probit模型的中介效应分析

温馨提示:若页面不能正常显示数学公式和代码,请阅读原文获得更好的阅读体验。

阅读全文:Logit和Probit模型的中介效应分析

作者:贾寰宇 (厦门大学)
邮箱jhy13261692355@163.com

编者按:本文主要整理自下文,特此致谢!
Source:Breen R, Karlson K B, Holm A. Total, direct, and indirect effects in logit and probit models[J]. Sociological Methods & Research, 2013, 42(2): 164-191. -Link- -PDF- -Google-

  • Title:Logit和Probit模型的中介效应分析
  • Keywords:Logit 模型,Probit 模型,直接效应,间接效应

1. 问题背景

在某些研究中,我们可能需要关注 Logit 和 Probit 模型中的中介效应分析。举例来说,当我们探究不同种族间收入差异的根源时,不均匀的教育资源分配可能是一个关键因素。为了评估中介效应,研究者通常会设定一组包含不同中介变量的模型,进而比较同一核心解释变量在这些模型中的回归系数。

在线性模型中,这些系数的差异衡量了预测变量 xx 对结果变量 yy 的影响通过中介变量而产生的关联程度。这是基于 路径分析 的原理。该原理将变量 xx 对变量 yy 的效应分解为两部分,一部分由变量 zz 介导,另一部分未被 zz 介导。以 zz 为中介的部分称为间接效应,而未以 zz 为中介的部分称为直接效应。

间接效应和直接效应的总和称为总效应,它等于当不包含中介变量时,xx 对 yy 的效应。具体如下所示:

y∗=βyxx+e(1)y∗=βyx​x+e(1)

y∗=βyx⋅zx+βyz⋅xz+v(2)y∗=βyx⋅z​x+βyz⋅x​z+v(2)

z=θzxx+w(3)z=θzx​x+w(3)

直接效应:βyx⋅zβyx⋅z​
间接效应:θzx×βyz⋅xθzx​×βyz⋅x​
总效应:βyx=βyx⋅z+θzx×βyz⋅xβyx​=βyx⋅z​+θzx​×βyz⋅x​

然而,在 Logit 和 Probit 等非线性二元概率模型中,总效应无法像线性模型那样分解为直接效应和间接效应 (Fienberg,1977;Karlson 等,2012;MacKinnon 和 Dwyer,1993;Winship 和 Mare 1983)。这是因为在非线性二元概率模型中,误差方差可能在不同模型中有所不同,回归系数和误差方差不能分别识别。

相反,模型返回的系数估计值等于真实回归系数与一个缩放参数的比值,该缩放参数是误差标准差的函数 (Amemiya,1975;Winship 和 Mare,1983)。

2. 方法介绍

2.1 理论部分

为了解决这个问题,本文提出了一种在非线性概率模型 (如 Logit 或 Probit) 中评估中介效应的通用框架。该方法将线性模型的分解性质扩展到线性参数的非线性概率模型中,使研究人员能够将总效应分解为直接效应和间接效应的和。

Logit 模型中,直接比较模型 (1) 和模型 (2) 预测变量 xx 前面的系数无法得到间接效应,因为估计出来的是真实系数估计值与残差标准差的函数的比值。

当把中介变量 zz 从模型 (2) 中去除时,缩放因子会变化,且新的误差项也未必会服从 Logistic 分布或正态分布 (即便 zz 与 xx 正交),所以系数差异法不能直接用于估计间接效应。

 温馨提示:若页面不能正常显示数学公式和代码,请阅读原文获得更好的阅读体验。

阅读全文:Logit

内容概要:该论文聚焦于6G通信中20-100GHz频段的电磁场(EMF)暴露评估问题,提出了一种基于自适应可重构架构神经网络(RAWA-NN)的预测框架。该框架通过集成权重分析模块优化模块,能够自动优化网络超参数,显著减少训练时间。模型使用70%的前臂数据进行训练,其余数据用于测试,并用腹部股四头肌数据验证模型泛化能力。结果显示,该模型在不同参数下的相对差异(RD)在前臂低于2.6%,其他身体部位低于9.5%,可有效预测皮肤表面的温升吸收功率密度(APD)。此外,论文还提供了详细的代码实现,涵盖数据预处理、权重分析模块、自适应优化模块、RAWA-NN模型构建及训练评估等内容。 适合人群:从事电磁兼容性研究、6G通信技术研发以及对神经网络优化感兴趣的科研人员工程师。 使用场景及目标:①研究6G通信中高频段电磁暴露对人体的影响;②开发更高效的电磁暴露评估工具;③优化神经网络架构以提高模型训练效率预测精度。 其他说明:论文不仅提出了理论框架,还提供了完整的代码实现,方便读者复现实验结果。此外,论文还讨论了未来的研究方向,包括扩展到更高频段(如300GHz)的数据处理、引入强化学习优化超参数、以及实现多物理场耦合的智能电磁暴露评估系统。建议读者在实际应用中根据具体需求调整模型架构参数,并结合真实数据进行验证。
内容概要:本文是北京金融科技产业联盟发布的《基于数据空间的金融数据可信流通研究报告》,探讨了金融数据可信流通的现状、挑战发展前景。文章首先介绍了金融数据在数字化转型中的重要性及其面临的隐私保护安全挑战。接着,文章详细阐述了数据空间的概念及其发展历程,尤其是可信数据空间(TDM)在我国的发展情况。文中还深入分析了金融数据可信流通的典型应用场景、关键技术方案架构,如数据访问控制、数据使用控制、智能合约、数据脱敏等。最后,文章展示了多个典型场景应用案例,如中信银行总分行数据流通管控、工银金租数据流通、银联安全生物特征支付等,并总结了当前可信数据空间建设中存在的法规、技术、标准商业模式挑战,提出了相应的政策建议。 适用人群:金融行业从业者、数据安全管理人员、政策制定者、科技研发人员等。 使用场景及目标:①理解金融数据可信流通的重要性挑战;②学习可信数据空间的关键技术应用场景;③探索金融数据可信流通的具体实践案例;④了解当前可信数据空间建设的瓶颈未来发展方向。 其他说明:本文不仅提供了详尽的技术应用分析,还提出了具体的政策建议,有助于推动金融数据可信流通的健康发展。阅读本文可以帮助读者深入了解金融数据安全保护高效利用的最佳实践,为相关政策技术的发展提供参考。
<think>好的,我现在需要帮助用户解决关于IV中介模型实现代码的问题,特别是当结果变量中介变量都是有序分类变量时的情况。首先,我应该回顾用户提供的引用内容,看看有没有相关的信息。 用户提到了引用[1],其中讨论了多分类变量的中介效应分析,使用StataR通过置信区间的方法。这可能与有序分类变量有关,但用户现在需要的是结合工具变量(IV)的中介模型。引用[2]解释了工具变量回归,特别是2SLSGMM,这可能与IV中介模型的基础方法相关。引用[3]则提到了基于IV的因果中介分析模型Stata实现,并提到了子样本分析,这可能对代码实现有帮助。 接下来,我需要确定IV中介模型如何处理有序分类变量。通常,当因变量是有序分类变量时,可以使用有序LogitProbit模型。而工具变量方法如2SLS可能需要调整,因为两阶段中的模型需要适应有序变量的特性。例如,第一阶段用线性回归预测中介变量,但当中介变量是有序分类时,可能需要用有序Probit模型,然后在第二阶段处理结果变量。不过,标准的2SLS可能不直接适用,需要进行扩展或者使用其他方法如GMM。 用户需要的是具体的代码实现,可能涉及R、Python或Stata。我需要回忆这些软件包中是否有支持这种情况的现有函数或包。例如,在R中,可能可以使用“ivpack”或“AER”包处理工具变量回归,但处理有序中介变量可能需要自定义两步模型Stata中的“ivregress”可能用于2SLS,但同样需要处理有序变量的情况,可能结合“oprobit”或“ologit”命令。Python中,可能使用“statsmodels”或“linearmodels”库,但需要检查是否支持有序因变量的工具变量回归。 另外,用户的问题可能涉及到结构方程模型(SEM)框架下的中介分析,其中工具变量用于处理内生性。对于有序变量,可能需要使用加权最小二乘法或者使用极大似然估计的方法。这可能涉及到特定的软件包,比如Stata的“gsem”或R的“lavaan”包,但这些是否支持工具变量还需要确认。 还需要考虑如何检验工具变量的有效性,如弱工具检验过度识别检验,这在有序变量模型中可能需要特定的方法。例如,使用Cragg-Donald统计量或Kleibergen-Paap检验,但这些通常适用于线性模型,对于非线性模型如有序Probit可能需要调整。 综合这些信息,我需要给出分步的实现方法,并为每个软件(R、Stata、Python)提供示例代码框架。需要注意的是,可能需要自定义一些步骤,特别是当现有包不支持直接处理有序变量的IV中介模型时。例如,在R中使用“ivprobit”或自定义两阶段模型,第一阶段用有序Probit预测中介,第二阶段用有序Probit处理结果变量,同时使用工具变量。或者使用GMM方法进行估计。 需要提醒用户注意模型假设的检验,如工具变量的相关性外生性,以及中介效应的分解方法,可能需要使用Bootstrap法计算置信区间,尤其是当涉及非线性模型时,传统的Sobel检验可能不适用。 最后,确保代码示例正确,并引用相关文献或资源供用户进一步参考。可能还需要指出当前方法的局限性,例如对大样本的需求或计算复杂度较高。</think>针对结果变量(Y)中介变量(M)均为有序分类变量的IV中介模型实现,需结合工具变量法(如2SLS扩展)有序概率模型(如有序Probit/Logit)。以下是分步骤实现方法及代码示例: --- ### **一、模型框架** 1. **第一阶段**:用工具变量(Z)预测内生中介变量(M) $$ M^* = Z\alpha + X\beta + \epsilon $$ 其中$M^*$为潜变量,观测到有序分类$M$通过阈值分段[^2]。 2. **第二阶段**:用预测的$\hat{M}$协变量(X)解释结果变量(Y) $$ Y^* = \hat{M}\gamma + X\theta + \eta $$ 同理,$Y^*$为潜变量,对应有序分类结果$Y$。 --- ### **二、代码实现** #### **R语言示例** ```r # 加载包 library(AER) library(MASS) # 第一阶段:有序Probit预测中介变量M fit_stage1 <- polr(M ~ Z + X, method = "probit", Hess=TRUE) M_pred <- predict(fit_stage1, type = "probs") # 获取潜变量预测值 # 第二阶段:有序Probit回归(Y ~ M_pred + X) fit_stage2 <- ivreg(Y ~ M_pred + X | Z + X) # 使用工具变量Z summary(fit_stage2) # Bootstrap中介效应置信区间 boot_effect <- function(data, indices) { sample_data <- data[indices, ] # 重复两阶段回归并计算效应 # ... return(effect) } boot_results <- boot(data, boot_effect, R=1000) boot.ci(boot_results, type="bca") ``` --- #### **Stata示例** ```stata * 第一阶段:有序Probit回归 oprobit M Z X predict M_hat, xb // 获取潜变量预测值 * 第二阶段:工具变量有序Probit回归(需安装cmp包) ssc install cmp cmp (Y = M_hat X) (M = Z X), ind($cmp_oprobit $cmp_oprobit) iv(M Z) estat overid // 检验工具变量外生性 ``` --- #### **Python示例** ```python import statsmodels.api as sm from statsmodels.miscmodels.ordinal_model import OrderedModel # 第一阶段:有序Probit预测M model_stage1 = OrderedModel(endog=M, exog=sm.add_constant(pd.concat([Z, X], axis=1)), distr='probit') res_stage1 = model_stage1.fit(method='bfgs') M_pred = res_stage1.predict() # 潜变量预测值 # 第二阶段:2SLS回归(需线性化处理) from linearmodels.iv import IV2SLS model = IV2SLS.from_formula('Y ~ 1 + M + X | Z + X', data=df) results = model.fit(cov_type='robust') print(results.summary) ``` --- ### **三、关键注意事项** 1. **非线性扩展**:传统2SLS假设线性关系,有序变量需使用潜变量框架[^1]。 2. **效应分解**:间接效应需通过乘积法($\alpha \cdot \gamma$)或Bootstrap法计算置信区间。 3. **工具检验**: - 弱工具检验:第一阶段F值需>10[^2]。 - 过度识别检验(Sargan检验):确保工具变量外生性。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值