最近在找关于用stat做KHB中介效应的资料,网上的资料都很少,相关的那个英文文献大家应该都找到了,但是英文看着难度太大了,还是不方便,本站又没有相关的正文总结,所有我继续在网上大海捞针,最后综合了基本上所有能找到的资料,终于找到了一个对新手友好的帖子,
本来我是打算自己直接把过程写一遍的,但是这篇帖子我觉得已经写的很完美了,对于不熟悉计量经济学但是又需要用到的人来说真的很友好,简单易懂,所以直接贴的链接。
链接:https://www.sohu.com/a/484783470_121124617
这篇文章可能也有人找到过,但它只是下半部分,如果只看这下半部分还是会有点不理解,所以以至于错过了这篇很好的文章, 所以需要大家去这篇文章里面附的微信公众号里面找另一半
(不是给这个公众号推广,因为这是作者发在搜狐上/或者被别人转法的帖子,但只发了一半,另一半只有去到那个微信公众号才有)
-------分割线-------
发布的时候说质量不佳,不给也确实,CSDN专注的不是这方面,但我觉得肯定还是有用STATA的朋友来这里问问题,所以我就贴几段STATA代码吧,这样应该就能通过审核了。
【感谢评论区老哥的指正,第一次写的时候把自变量和因变量位置写反了,我就不再更改下边的内容了,stata已经卸载了,大家自己做的时候注意下就行】
//在这段代码中,自变量:estp 因变量:internet
// 中介变量:risk2, social_capital
//我用的模型是probit模型,其他的模型也都一样,注意你用的模型的数据要求就行
/*KHB中介效应代码,首先要单独分析risk2和social_capital的中介效应,多余的是我的自变量,不用管*/
khb probit estp internet || risk2 health marriage edu age gender fml_income fml_deposit fml_count
khb probit estp internet || social_capita health marriage edu age gender fml_income fml_deposit fml_count
结果如图,我列出一个:
这个结果大家应该就懂了,不知道怎么解释的去看上面的帖子或者多看论文,我这个结果是不显著的,结果不行,但最后出来的效果就是这样。
然后是贡献度的计算:
//我的中介变量有五个,risk2, social_capital,aa,e,cc,也可以对应下面的图,这五个变量之后的变量都是我的控制变量,不用管。
代码:
khb probit estp internet || risk2 social_capital aa e cc , concomitant(health marriage edu age gender fml_income fml_deposit fml_coun
> t ) summary disentangle notable
这是结果的图,结果也很明确了
我的表示是很简略的,如果你有需要,还是推荐按我上述的方式,找到我借鉴的帖子,那个真的写的很好,把介绍khb方法的英文原文详略得当的翻译了出来。