Deep Graph Library
文章平均质量分 95
DGL是一个功能强大、易于使用和可扩展的图神经网络框架,它可以帮助用户快速构建、训练和评估各种类型的图神经网络模型。
镰刀韭菜
视野,意志,品格;目标,坚持,实践
展开
-
【图神经网络】手把手带你快速上手OpenHGNN
OpenHGNN是一个基于 DGL [Deep Graph Library] 和 PyTorch 的开源异质图神经网络工具包,集成了异质图神经网络的前沿模型。原创 2023-05-28 15:02:15 · 1187 阅读 · 5 评论 -
【图神经网络】使用DGL入门异构图神经网络
传统同构图()数据中只存在一种节点和边,因此在构建图神经网络时所有节点共享同样的模型参数并且拥有同样维度的特征空间。而异构图()中可以存在不只一种节点和边,因此允许不同类型的节点拥有不同维度的特征或属性。这一特点使得异构图的应用十分广泛。事实上,如果用图来描述我们和周围事物的关系就会发现所产生的图都是天然异构的。比如今天看了电影《流浪地球》,那“我”作为观众和电影《流浪地球》之间就建立了“看了”这一关系。异构图可以用来描述这种交互关系的集合。这个图分“观众”和“电影”两类节点,以及“看了”这一类边。原创 2022-11-23 23:30:00 · 3087 阅读 · 0 评论 -
【图神经网络】使用DGL框架实现简单图分类任务
这里使用的图分类器和应用在图像或者语音上的分类器类似——先通过多层神经网络计算每个样本的表示(representation),再通过表示计算出每个类别的概率,最后通过向后传播计算梯度。通过图卷积(Graph Convolution)层获得图中每个节点的表示。使用「读出」操作(Readout)获得每张图的表示。使用 Softmax 计算每个类别的概率,使用向后传播更新参数。下图展示了整个流程:之后我们将分步讲解每一个步骤。原创 2022-11-17 11:33:02 · 2554 阅读 · 2 评论 -
【图神经网络】图神经网络框架DGL1.0初体验
DGL 1.0 总结了过去三年学术界或工业界对图深度学习和图神经网络(GNN)技术的各类需求。从最先进模型的学术研究到将 GNN 扩展到工业级应用,DGL 1.0 为所有用户提供全面且易用的解决方案,以更好的利用图机器学习的优势。原创 2023-03-16 20:54:40 · 1084 阅读 · 1 评论