Tensorflow2实战
文章平均质量分 94
分享Tensorflow2的学习笔记,实战案例,以及问题解答
镰刀韭菜
视野,意志,品格;目标,坚持,实践
展开
-
【Tensorflow】TensorFlow2中提供的几种处理特征列的方法
TensorFlow 2 提供了多种处理特征列的方法,用于对数据进行转换,然后把转换后的数据传入TensorFlow的layers.DenseFeatures层,并将该层作为神经网络的输入层。原创 2023-09-14 08:00:00 · 385 阅读 · 0 评论 -
Ubuntu Server 16.04 安装Anaconda+TensorFlow
确定要安装哪种 TensorFlow仅支持 CPU 的 TensorFlow。如果您的系统没有 NVIDIA® GPU,就必须安装此版本。请注意,此版本的 TensorFlow 通常更容易安装(用时通常在 5 或 10 分钟内),所以即使您拥有 NVIDIA GPU,我们也建议先安装此版本。支持 GPU 的 TensorFlow。TensorFlow 程序在 GPU 上的运行速度通常要比在 CPU...原创 2018-05-07 17:34:41 · 1731 阅读 · 1 评论 -
【Tensorflow】TensorFlow深层神经网络学习笔记
TensorFlow深层神经网络学习笔记1. 深度学习与深层神经网络1.1 线性模型的局限性1.2 激活函数实现去线性化1.3 多层网络解决异或运算2. 损失函数定义2.1 经典损失函数2.2 自定义损失函数参考资料1. 深度学习与深层神经网络深度学习是一类通过多层非线性变换对高复杂性数据建模算法的合集。 深度学习有两个重要的特性——多层和非线性。所以基本上可以认为深度学习是深层神经网络的代名词。1.1 线性模型的局限性在线性模型中,模型的输出为输入的加权和。一个线性模型中通过输入得到输出的函数被称原创 2022-02-08 12:00:00 · 477 阅读 · 0 评论 -
【Tensorflow】通过TensorFlow2.0训练神经网络模型
通过TensorFlow2.0训练神经网络模型TensorFlow v1中神经网络模型的训练TensorFlow v2中神经网络的训练梯度下降法反向传播参考资料在神经网络优化算法中,最常用的方法是反向传播算法(backpropagation),其工作流程如下图:如图所示,反向传播算法实现了一个迭代的过程。每次迭代的开始,都选取一部分训练数据,这一小部分数据叫做一个batch。然后,这个batch的样例会通过前向传播算法得到神经网络模型的预测结果。因为训练数据都是有正确答案标注的,所以可以计算出当前神经原创 2022-02-09 08:30:00 · 2618 阅读 · 0 评论 -
【Tensorflow】TensorFlow2.0高阶操作演示
TensorFlow2.0高阶操作演示合并与分割合并与分割数据统计张量排序填充与复制张量限幅高阶操作tf.concat([a, b], axis)沿着axis轴(维度)拼接若干个张量,必须保证参与拼接的各个张量除需要拼接的维度其他维度必须一致,concat不会创建新的维度,而是在原来的维度上累加。tf.splittf.stacktf.unstack...原创 2022-01-14 08:30:00 · 236 阅读 · 0 评论 -
【TensorFlow】TensorFlow2 基础操作演示
菜鸟学TensorFlow 2.0:TensorFlow2.0基础操作演示1. Tensor数据类型2. 创建Tensor3. Tensor索引和切片4. Tensor维度变换5. Broadcast6. 数学运算7. 手写数字识别流程8. TensorFlow实现神经网络参考资料1. Tensor数据类型TensorFlow没有那么神秘,为了适应自动求导和GPU运算,它应运而生。为了契合numpy的核心数据类型ndarray,其最核心的数据类型为Tensor,中文指张量(一般,数学上分标量,一维向量,原创 2022-01-09 23:14:04 · 1465 阅读 · 0 评论 -
【Tensorflow】TensorFlow2.0基础知识讲解
【Tensorflow】菜鸟学TensorFlow 2.0:TensorFlow2.0基础知识讲解1. 简介2. TensorFlow的特点3. TensorFlow的发展历程4. TensorFlow 2 的框架5. TensorFlow的开发流程6. TensorFlow为研究提供强大的实验工具7. 入门案例8. TensorFlow常见基本概念1. 计算图2. 张量3. 会话4. 运算操作和运算核参考资料1. 简介TensorFlow 是一种用于表达机器学习算法的接口,也是一种用于执行此类算法的实原创 2022-01-09 11:50:58 · 3181 阅读 · 1 评论 -
【Tensorflow】菜鸟学TensorFlow 2.0:TensorFlow2.0安装与环境配置
菜鸟学TensorFlow 2.0:TensorFlow2.0安装与环境配置1. TensorFlow概述2. TensorFlow环境搭建1. TensorFlow概述Tensorflow是当今深度学习很流行的一个框架,它是由谷歌开发的深度学习框架到现在已经发布到了TF2.0版本了。TensorFlow 2 废弃了大量重复的接口,将 Keras 作为搭建网络的主力接口,也添加了很多新的特性,极大地改进了可用性,能有效地减少代码量。TF的安装有两个版本一个是CPU版另一个是GPU版。当然GPU上运行TF原创 2021-10-05 19:53:50 · 8655 阅读 · 0 评论 -
【Tensorflow】TensorFlow2.0神经网络基础
前向传播 神经网络 数据加载,损失函数,交叉熵原创 2022-02-04 23:13:49 · 868 阅读 · 0 评论 -
【再学Tensorflow2】TensorFlow2的高层封装
TensorFlow2的高层封装模块主要是`tensorflow.keras.models`。因此本文主要介绍tf.keras.models相关的内容,包括:- 模型的构建(Sequential、functional API、Model子类化)- 模型的训练(内置fit方法,内置train_on_batch方法,自定义训练循环、单GPU训练模型、多GPU训练模型、TPU训练模型)- 模型的部署(Tensorflow serving部署模型,使用spark(scala)调用tensorflow模型)原创 2022-12-31 08:00:00 · 924 阅读 · 0 评论 -
【再学Tensorflow2】TensorFlow2的模型训练组件(2)
一般地,监督学习的目标函数由损失函数(loss function)和正则化项组成。(Objective = Loss + Regularization)。对于Keras模型,目标函数中的正则化项一般在各层中指定,例如使用`Dense`的`kernel_regularizer` 和 `bias_regularizer`等参数指定权重使用`L1`或者`L2`正则化项,此外还可以用`kernel_constraint` 和 `bias_constraint`等参数约束权重的取值范围,这也是一种正则化手段。原创 2022-12-30 23:30:00 · 642 阅读 · 0 评论 -
【再学Tensorflow2】TensorFlow2的张量操作与AutoGraph计算图
TensorFlow的低阶API主要包括张量操作,计算图和自动微分。在低阶API层次上,可以把TensorFlow当做一个增强版的numpy来使用。但TensorFlow提供的方法比numpy更全面,运算速度更快,如果需要的话,还可以使用GPU进行加速。原创 2022-12-29 08:00:00 · 536 阅读 · 0 评论 -
【再学Tensorflow2】TensorFlow2的层次结构
TensorFlow中5个不同的层次结构:即硬件层,内核层,低阶API,中阶API,高阶API。本文以线性回归和DNN二分类模型为例,直观对比展示在不同层级实现模型的特点。原创 2022-12-28 23:30:00 · 350 阅读 · 0 评论 -
【再学Tensorflow2】TensorFlow2的核心概念
TensorFlow是一个采用`数据流图(data flow graphs)`,用于数值计算的开源软件库。`节点(Nodes)`在图中表示数学操作,图中的`线(edges)`则表示在节点间相互联系的多维数据数组,即`张量(tensor)`。它灵活的架构让你可以**在多种平台上展开计算**,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等。原创 2022-12-28 08:00:00 · 788 阅读 · 0 评论 -
【再学Tensorflow2】TensorFlow2的建模流程:疫情发展趋势分析
**时间序列是在商业数据或工程数据中经常出现的一种数据形式,是以时间为次序排列**。用来描述和计量一系列过程或者行为的数据的统称。一般研究的时间序列数据有**两种类型**。最常见的是跟踪单一的计量数据随时间变化的情况,即**每个时间点上收集的数据是一个一维变量**,这种是最常见的,通常的时间序列默认就是这种数据。另一种时间序列是多个对象或者多个维度的计量数据随时间变化的情况,即**每个时间点上收集的数据是一个多维变量**,这种一般也被称为`纵向数据(Longitudinal Data)`。原创 2022-12-27 23:30:00 · 1183 阅读 · 0 评论 -
【再学Tensorflow2】TensorFlow2的建模流程:电影评论分析
情感分析无处不在,它是一种基于自然语言处理的分类技术。其主要解决的问题是给定一段话,判断这段话是正面的还是负面的。情感分析的本质就是根据已知的文字和情感符号,推测文字是正面的还是负面的。进行情感分析有如下难点:第一,文字非结构化,有长有短,很难适合经典的机器学习分类模型;第二,特征不容易提取。文字可能是谈论的某个主题,也可能是某个人物、商品或事件。人工提取特征耗时费力。第三,词与词之间有联系,把这部分信息纳入模型不容易。深度学习适合做文字处理和语义理解,是因为深度学习结构灵活,其底层利用`词嵌入`技原创 2022-12-27 08:00:00 · 900 阅读 · 0 评论 -
【再学Tensorflow2】TensorFlow2的建模流程:CIFAR2图像识别
本文主要通过卷积神经网络在图像识别上的应用来讲解卷积神经网络的基本原理以及如何使用Tensorflow2实现卷积神经网络。CIFAR数据集是一个影响力很大的图像分类数据集,其中的图片为32×32的彩色图片。原创 2022-12-26 23:30:00 · 805 阅读 · 0 评论 -
【再学Tensorflow2】TensorFlow2的建模流程:Titanic生存预测
使用Sequential按层顺序构建模型使用函数式API构建任意结构模型集成Model基类构建自定义模型这里,我们使用最简单的Sequential,按层顺序模型。原创 2022-12-20 23:57:29 · 485 阅读 · 0 评论