李宏毅ML lecture-11 why deep

本文探讨了深度学习为何能以较少的参数和数据实现与传统机器学习算法相同的效果,并深入解析了深度学习在模组化、电路设计及窗花图案识别等领域的应用。通过对比不同深度模型在相同参数规模下的表现,文章论证了深度模型的优势所在。
摘要由CSDN通过智能技术生成

这节课主要将深度学习的深度是如何体现的.

Seide, Frank, Gang Li, and Dong Yu. “Conversational Speech Transcription Using Context-Dependent Deep Neural Networks.” Interspeech. 2011.
在这里插入图片描述
如图所示,同样参数规模下,模型越深效果越好!
李弘毅老师是这样认为的:
同样效果下DeepLearning 所需的参数更少,所以所需的数据更少!
与我们的常识AI=Big Data+DeepLearning 相反.
但是我觉得"同样效果下"这个前置条件,很有意思.当DeepLearning 达到以往机器学习算法的效果时,他所需的参数以及数据是更少的,但是我们的目标是追求最好的效果,所以不断的增加深度,也就是增加参数,所以需要的数据更多.这个就是目前我们的错觉.

Deep → Modularization

The modularization is automatically learned from data.
Deep 表示模组化(Modularization)

电路

在这里插入图片描述

窗花

在这里插入图片描述

End-to-end Learning

处理复杂的问题—语音问题

在这里插入图片描述
端到端生产线由一组简单的function组成

使用Deep Learning 的理由

完成复杂的任务

  1. 输入相似的data,输出不同的feature
  2. 输出不相似的data,输出相同的feature

learning more

Deep Learning: Theoretical Motivations (Yoshua Bengio)
http://videolectures.net/deeplearning2015_bengio_theoretical_motivations/
Connections between physics and deep learning
https://www.youtube.com/watch?v=5MdSE-N0bxs
Why Deep Learning Works: Perspectives from Theoretical Chemistry
https://www.youtube.com/watch?v=kIbKHIPbxiU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值