pycharm查看全部tensor数据,取消省略

方法一

<tensor>.cpu().numpy()

在这里插入图片描述
把tensor转为ndarray
然后点击say as array
在这里插入图片描述

方法二

torch.set_printoptions(profile="full")
print(x) # prints the whole tensor
torch.set_printoptions(profile="default") # reset
print(x) # prints the truncated tensor

PyCharm中安装了PyTorch之后,你可以开始编写基于PyTorch的分类代码。以下是一个基本的例子,展示如何使用PyTorch创建一个简单的卷积神经网络(Convolutional Neural Network,CNN)用于图像分类: ```python # 首先导入所需的库 import torch import torchvision import torchvision.transforms as transforms # 数据预处理 transform = transforms.Compose([ transforms.Resize((224, 224)), # 调整图片大小 transforms.ToTensor(), # 转换成张量 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # 归一化 ]) # 加载数据集,比如MNIST手写数字数据集 trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=2) # 定义模型(这里是一个简单的CNN结构) model = torchvision.models.resnet18(pretrained=True) # 使用预训练的ResNet模型 num_classes = 10 # MNIST有10个类别 model.fc = torch.nn.Linear(model.fc.in_features, num_classes) # 修改最后一层全连接层 # 损失函数和优化器 criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9) # 训练模型 for epoch in range(10): # 这里仅示例,实际可能需要更多epoch for i, (images, labels) in enumerate(trainloader): images = images.view(-1, 784) # 将二维数组转为通道第一维 optimizer.zero_grad() # 清零梯度 outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 测试代码省略,通常会有一个验证过程和评估性能的部分 ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会写代码的孙悟空

赠人玫瑰 手有余香

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值