传统的图像识别问题:
将过程分解为预处理,特征提取和选择,分类器设计等若干步骤。
优点:把复杂的问题分解为简单、可控且清晰的若干小的子问题。
缺点:尽管可以在子问题上得到最优解,但子问题上的最优解并不意味着就能得到全局问题的最后解。
深度学习图像识别(提供了一种端到端的学习范式):
整个学习的流程并不进行人为的子问题划分,而是完全交给深度学习模型直接学习从原始数据到期望输出的映射。
对深度模型而言,其输入数据是未经人为加工的原始样本形式,后续则是堆叠在输入层上的众多操作层,这些操作层整体可以看作一个复杂的函数FCNN(全卷积网络), 最终的损失函数由数据损失data loss和模型参数的正则化损失(regularization loss)共同组成,模型深度的训练则是在最终损失驱动下对模型进行参数更新并将误差反向传播至网络各层。