python数据处理(一)——如何用python实现excel功能

这篇博客介绍了如何使用Python的pandas库来实现Excel数据的读取、合并、处理和保存。从读取单个文件到合并多个CSV文件,再到数据的筛选、计算、特征构建和数据透视,最后探讨了数据的保存方法,提供了详细的代码示例。
摘要由CSDN通过智能技术生成

一、数据源

1、读取数据

import pandas
JL_data=pandas.read_excel(io='路径\数据源.xlsx')

data=pandas.DataFrame(JL_data)

import pandas as pd
merged_data= pd.read_csv(r'路径\数据源.csv')

一个文件夹内的文件合并后读取

import os
import pandas as pd
folder_path = r'C:\...'
# 获取文件夹中的所有CSV文件
csv_files = [file for file in os.listdir(folder_path) if file.endswith('.csv')]
# 创建一个空的DataFrame用于存储合并后的数据
merged_data = pd.DataFrame()
# 遍历每个CSV文件并合并数据
for file in csv_files:
    file_path = os.path.join(folder_path, file)
    data = pd.read_csv(file_path)
    merged_data = pd.concat([merged_data, data], ignore_index=True)

2、编写数据

1)行列

data=pd.DataFrame(
  np.random.randint(low=0,high=6,size=(5,5)),
  columns=['列1','列2'],
  index=['行1','行2'])

2)列

data=pd.DataFrame({'key1':list('aabba'),
                  'key2': ['one','two','one','two','one'],
                  'data1': np.random.randn(5),
                  'data2': np.random.randn(5)})

二、数据获取

1、单列:data["lng"]

2、多列:

xl = data.iloc[:, 1:]  # 选取DataFrame的所有行,并截取第二列至最末列。
df = data.iloc[1:]  # 选取DataFrame的第二行至最末行,保留所有列,并将选取的数据表保存在一个新的变量中。

3、单个值:

data["lng"][0]==data.loc[0,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值