def fit(self,
x=None,
y=None,
batch_size=None,
epochs=1,
verbose=1,
callbacks=None,
validation_split=0.,
validation_data=None,
shuffle=True,
class_weight=None,
sample_weight=None,
initial_epoch=0,
steps_per_epoch=None,
validation_steps=None,
validation_freq=1,
max_queue_size=10,
workers=1,
use_multiprocessing=False,
**kwargs):
“”"Trains the model for a fixed number of epochs (iterations on a dataset).
***# Arguments
x: Input data. It could be:
- A Numpy array (or array-like), or a list of arrays
(in case the model has multiple inputs).
- A dict mapping input names to the corresponding
array/tensors, if the model has named inputs.
- A generator or `keras.utils.Sequence` returning
`(inputs, targets)` or `(inputs, targets, sample weights)`.
- None (default) if feeding from framework-native
tensors (e.g. TensorFlow data tensors).
y: Target data. Like the input data `x`,
it could be either Numpy array(s), framework-native tensor(s),
list of Numpy arrays (if the model has multiple outputs) or
None (default) if feeding from framework-native tensors
(e.g. TensorFlow data tensors).
If output layers in the model are named, you can also pass a
dictionary mapping output names to Numpy arrays.
If `x` is a generator, or `keras.utils.Sequence` instance,
`y` shoul