【问题描述】
有一长方形,长为 343720 单位长度,宽为 233333 单位长度。在其内部左 上角顶点有一小球(无视其体积),其初速度如图所示且保持运动速率不变,分 解到长宽两个方向上的速率之比为 dx : dy = 15 : 17。小球碰到长方形的边框时 会发生反弹,每次反弹的入射角与反射角相等,因此小球会改变方向且保持速 率不变(如果小球刚好射向角落,则按入射方向原路返回)。从小球出发到其第 一次回到左上角顶点这段时间里,小球运动的路程为多少单位长度?答案四舍 五入保留两位小数。
速度分量 dx dy 最后回到左上角,走的x方向分量,走的y方向分量,一定是2x,2y的整数倍
走的路程Sx Sy. Sx%2x=0 Sy%2y=0;
Sx=2mx; Sy=2ny;
时间为 t t*dx=2mx; t*dy=2ny; t=2mx/dx=2ny/dy;
m/n=(y*dx)/(x*dy);
gcd(分子,分母) //最简分式
算出m=1059; 算出t t*dx=2mx; t出来后,直接算路程勾股定理。
#include<bits/stdc++.h>
using namespace std;
int main()
{
ios::sync_with_stdio(0),cin.tie(0), cout.tie(0);
int fenzi=15*233333;
int fenmu=17*343720;
int g=__gcd(fenzi,fenmu);
fenzi/=g;
fenmu/=g;
cout<<fenzi<<"//"<<fenmu<<endl;
double t=2*1059*343720/15;
//cout<<t<<endl;
double s;
s=sqrt((15*t)*(15*t)+(17*t)*(17*t));
printf("%.2lf\n",s);
}
最终运行结果为:1100325199.77
该文章参考哔站up:Dashcoding 侵权联系。