本周将的是非线性Hypothesis。
为什么需要non-linear hypothesis?
如果我们只是用多项式来表达的话,特征数会以多项式的复杂度上升。比方说有N个输入,2次的特征,那么我们就需要O(N^2)个特征,3次的话,就需要O(N^3)个,这个增长率实在是太夸张了。比方说一个图像,50x50 = 2500个像素,即使是使用平方的feature,也需要近3 million个特征。
神经网络
神经网络其实之前有专项课,所以这里就把主要的东西说一下。
一个是表示:
上标表示层数,下表表示某一层的第几个。
示例

多类别 one vs all

本文探讨了非线性假设的重要性,特别是在面对高维数据时如何有效减少特征数量的问题。通过实例说明了即使简单的二次特征也会导致特征数量呈指数级增长。进而引入神经网络的概念,解释其在网络表示方面的关键作用。
640

被折叠的 条评论
为什么被折叠?



