Coursera吴恩达机器学习week4笔记

本文深入探讨了支持向量机(SVM)的数学原理,包括大边距分类的直观理解,以及如何通过核函数(Kernels)将非线性可分问题转化为线性可分问题。文中详细解释了高斯核函数的应用,并提及其他不常用的核函数如多项式核、字符串核、卡方核和直方图交叉核。此外,还讨论了在实现SVM时如何选择和处理核函数,以及如何利用标记点(landmark)进行预测。

Large Margin Classification

Optimization Objective

svm:在这里插入图片描述

Large margin intuition

在这里插入图片描述

Mathematics Behind Large Margin Classification

在这里插入图片描述

在这里插入图片描述

Kernels

Kernels1

定义决策边界对应的函数是Θ0+Θ1f1+Θ2f2+Θ3f3,其中f1、f2和f3就是相似度函数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值