10.7.5 量化优化技术
量化(Quantization)是指将神经网络中的浮点数参数和激活值转换为低位宽的整数或定点数,从而减小模型的存储需求和计算复杂度。通常,神经网络的权重和激活值会被量化到8位甚至更低的位宽,以减小模型的大小,加速推理过程,并降低功耗。然而,由于量化可能导致信息损失,因此需要平衡量化程度和模型性能之间的关系。具体来说,量化可以在多个方面对模型进行优化:
- 参数量化:将神经网络的权重参数从浮点数转换为整数或定点数。这可以显著减小模型的存储空间,从而在资源受限的设备上更高效地部署模型。
- 激活量化:将神经网络的激活值从浮点数转换为整数或定点数。这减小了内存带宽需求,从而提高了推理速度。
- 混合精度量化:在神经网络中,有些层的参数可能更适合使用低位宽量化,而有些层的参数可能需要保持较高的精度。混合精度量化允许在不同层使用不同位宽的量化,以平衡模型精度和性能。
- 量化感知训练:通过在训练期间使用量化模型进行训练,可以更好地调整模型以适应低位宽的表示。这有助于减轻量化对模型精度的影响。
- 动态范围估计:在量化过程中,为了保持模型性能,需要估计每个层的动态范围。动态范围估计可