本项目通过分析Live Cattle Futures市场数据,使用机器学习模型(Logistic Regression)制定了一个股票交易策略。该策略在过去10年中相对于传统的持有不动方法表现更佳,总回报率为62.16%,超过了后者的37.56%。尽管策略仍然有改进的空间,尤其是在降低回撤期间的持续时间和强度方面,但相较于Buy & Hold策略,其在“风险-回报”关系、最大回撤、恢复因子等方面均取得了显著优势,为投资者提供了更稳定的交易体验。
trading-follow-the-trend.ipynb
1.2.1 背景介绍
在金融市场中,趋势跟踪是一种常用的交易策略,其中交易员的目标是在价格朝向上升趋势时买入金融证券,并在价格开始朝向下降趋势时卖出。这一特定策略可以应用于您想要的任何资产,如股票、期货、加密货币、外汇等。趋势跟随还可以应用于任何时间框架,无论是想在5分钟时间框架上执行短期交易,还是在日常、周常,甚至是月常时间框架上执行。
在实际应用中,有许多不同的技术来判断是否存在趋势。在这些技术中,一种非常流行的技术是使用移动平均线,它提供了一个直观而视觉的指导,显示价格朝向何方。通常,交易员会选择任何移动平均线,例如5周期移动平均线,当价格高于此移动平均线时买入,而在价格低于此移动平均线时卖出。
本项目的目标是通过定量的角度来看待趋势跟随策略,并观察我们如何使用Python、数据科学和机器学习来开发有效的趋势跟随交易策略。