(15-10)基于时间序列预测的比特币自动交易系统:使用时间序列预测

本文介绍了如何使用Python的statsmodels和pmdarima库对时间序列数据进行一阶差分、对数变换,以及ARIMA模型的构建、参数选择和预测。通过ACF和PACF图帮助确定模型阶数,并展示了滚动预测的walk_forward_validation函数,用于模型在训练集和测试集上的性能评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.5.10  预测

(1)下面的代码生成了两个子图,第一个子图展示了一阶差分的时间序列图,而第二个和第三个子图则显示了差分序列的自相关函数(ACF)和偏自相关函数(PACF)。

from statsmodels.graphics.tsaplots import plot_acf
from statsmodels.graphics.tsaplots import plot_pacf

#figure setup
fig = plt.figure(figsize=(24,12))
ax1 = fig.add_subplot(2,1,1)
ax1.set_title('1st Order Differencing')
ax2 = fig.add_subplot(2,2,3)
ax3 = fig.add_subplot(2,2,4)

#plots
ax1.plot(y_d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值