(6-2)基于知识图谱的推荐:知识表示和语义关联

本文详细探讨了知识图谱中实体和属性的表示方法,如独热编码和嵌入表示,以及如何在推荐系统中利用关系的表示和推理,包括用户-商品、用户-用户和商品-商品关系。通过Python示例展示了如何使用Word2Vec和余弦相似度计算商品的语义关联。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

6.2  知识表示和语义关联

在知识图谱中,知识表示和语义关联相互作用,共同构成了知识图谱的核心内容和功能。它们通过提供丰富的语义信息和关联关系,支持推荐、搜索、推理等任务,提高了知识的利用效率和智能化水平。

6.2.1   实体和属性的表示

在Python中构建推荐系统时,实体和属性的表示是非常重要的一部分,下面列出了关于实体和属性表示的一些常见方法。

(1)实体表示

  1. 独热编码(One-Hot Encoding):将每个实体表示为一个二进制向量,向量的长度等于实体的总数,每个实体对应向量中的一个位置,该位置为1,其余位置为0。这种表示方法简单直观,适用于实体数量较少的情况。
  2. 嵌入表示(Embedding):使用向量表示来捕捉实体的语义信息和关联关系。通过将每个实体映射到一个低维连续向量空间,实体之间的相似性和关系可以在向量空间中进行计算和匹配。常用的嵌入表示方法包括词嵌入(Word Embedding)和图嵌入(Graph Embedding)等。

(2)属性表示

  1. 独热编码(One-Hot Encoding):对于离散属性,可以使用独热编码将每个属性值表示为一个二进制向量。向量的长度等于属性值的总数,对应的属性值位置为1,其余位置为0。
  2. 数值化表示:对于数值属性,可以直接使用实际的数值来表示属性。可以进行归一化或标准化处理,以确保属性之间的比较和计算具有可比性。
  3. 文本表示:对于文本属性,可以使用文本特征提取方法,如词袋模型(Bag-of-Words)或词向量表示(Word Embedding),将文本转换为数值表示,以便进行计算和匹配。

在推荐系统中,实体和属性的表示方法通常与具体的任务和数据特点相关。根据实际情况,可以选择合适的表示方法来表示和处理实体和属性,以支持个性化推荐、相似度计算、关联分析等任务。同时,也可以结合深度学习等技术,通过模型训练来学习实体和属性的表示,以提高推荐系统的准确性和效果。

请看下面的例子,展示了在Python商品推荐系统中创建实体和属性表示的过程。

源码路径:daima/6/shiti.py

class Product:
    def __init__(self, id, name, category, price, brand):
        self.id = id
        self.name = name
        self.category = category
        self.price = price
        self.brand = brand

# 创建商品实例
product1 = Product(1, "iPhone 12", "Electronics", 999, "Apple")
product2 = Product(2, "Samsung Gal
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值