10.3 Soft Actor-Critic (SAC)
Soft Actor-Critic(SAC)是一种深度强化学习算法,用于解决连续动作空间和高维状态空间下的强化学习问题。SAC是Actor-Critic(演员-评论家)算法的一种变体,它引入了一些改进和创新,使其在多方面具有出色的性能。
10.3.1 Soft Actor-Critic算法的核心思想
Soft Actor-Critic(SAC)的核心思想是通过最大熵强化学习来实现策略优化,以平衡探索和利用。它通过引入双值函数、目标熵的自动调整以及经验回放等技术来处理连续动作空间的问题,并通过深度神经网络来学习复杂的策略。SAC已经在许多强化学习任务中表现出色,特别适用于需要处理高维状态和连续动作的问题。
- 最大熵强化学习:SAC借鉴了最大熵强化学习的思想。最大熵强化学习不仅关注最大化累积奖励,还最大化策略的熵(或不确定性)。这意味着SAC的策略不仅会试图获得高回报,还会试图保持多样性和探索性,从而更全面地探索状态空间。最大熵正则化的引入