(10-3)Actor-Critic算法:Soft Actor-Critic (SAC)

本文介绍了SoftActor-Critic(SAC)算法,一种用于处理连续动作空间和高维状态的强化学习方法。核心思想是通过最大熵强化学习平衡探索和利用,利用双值函数、目标熵自调以及经验回放等技术。文章详细解释了熵的作用,SAC的训练过程,并给出了一个实战例子。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

10.3  Soft Actor-Critic (SAC)

Soft Actor-Critic(SAC)是一种深度强化学习算法,用于解决连续动作空间和高维状态空间下的强化学习问题。SAC是Actor-Critic(演员-评论家)算法的一种变体,它引入了一些改进和创新,使其在多方面具有出色的性能。

10.3.1  Soft Actor-Critic算法的核心思想

Soft Actor-Critic(SAC)的核心思想是通过最大熵强化学习来实现策略优化,以平衡探索和利用。它通过引入双值函数、目标熵的自动调整以及经验回放等技术来处理连续动作空间的问题,并通过深度神经网络来学习复杂的策略。SAC已经在许多强化学习任务中表现出色,特别适用于需要处理高维状态和连续动作的问题。

  1. 最大熵强化学习:SAC借鉴了最大熵强化学习的思想。最大熵强化学习不仅关注最大化累积奖励,还最大化策略的熵(或不确定性)。这意味着SAC的策略不仅会试图获得高回报,还会试图保持多样性和探索性,从而更全面地探索状态空间。最大熵正则化的引入
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值