(10-1)强化推荐学习:强化学习的基本概念

强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一,用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题 。在本章的内容中,将详细讲解基于强化学习的推荐系统的知识和用法。

10.1  强化学习的基本概念

强化学习是一种机器学习方法,旨在让智能体通过与环境的交互来学习最佳行动策略。与其他机器学习方法不同,强化学习中的智能体并不依赖于标记的训练数据集,而是通过不断尝试和与环境的交互来进行学习。

10.1.1  基本模型和原理

强化学习是从动物学习、参数扰动自适应控制等理论发展而来,其基本原理是:如果Agent的某个行为策略导致环境正的奖赏(强化信号),那么Agent以后产生这个行为策略的趋势便会加强。Agent的目标是在每个离散状态发现最优策略以使期望的折扣奖赏和最大。

强化学习是智能体(Agent)以“试错”的方式进行学习,通过与环境进行交互获得的奖赏指导行为,目标是使智能体获得最大的奖赏。强化学习把学习看作是一个试探评价的过程,Agent选择一个动作用于环境,环境接受该动作后状态发生变化,同时产生一个强化信号(奖或惩)反馈给Agent,Agent根据强化信号和环境当前状态再选择下一个动作,选择的原则是使受到正强化(奖)的概率增大。选择的动作不仅影响立即强化值,而且影响环境下一时刻的状态及最终的强化值。

强化学习不同于连接主义学习中的监督学习,主要表现在教师信号上,强化学习中由环境提供的强化信号是Agent对所产生动作的好坏作一种评价(通常为标量信号),而不是告诉Agent如何去产生正确的动作。由于外部环境提供了很少的信息,Agent必须靠自身的经历进行学习。通过这种方式,Agent在行动一一评价的环境中获得知识,改进行动方案以适应环境。

强化学习系统学习的目标是动态地调整参数,以达到强化信号最大。若已知r/A梯度信息,则可直接可以使用监督学习算法。因为强化信号r与Agent产生的动作A没有明确的函数形式描述,所以梯度信息r/A无法得到。因此,在强化学习系统中,需要某种随机单元,使用这种随机单元,Agent在可能动作空间中进行搜索并发现正确的动作。

强化学习的常见模型是标准的马尔可夫决策过程(Markov Decision Process, MDP)。按给定条件,强化学习可分为基于模式的强化学习(model-based RL)和无模式强化学习(model-free RL),以及主动强化学习(Active RL)和被动强化学习(Passive RL)。强化学习的变体包括逆向强化学习、阶层强化学习和部分可观测系统的强化学习。求解强化学习问题所使用的算法可分为策略搜索算法和值函数(value function)算法两类。深度学习模型可以在强化学习中得到使用,形成深度强化学习。

10.1.2  强化学习中的主要要素

强化学习中的主要要素包括:

  1. 状态(State):环境的特征或观测,用于描述智能体所处的情境。
  2. 动作(Action):智能体可以选择的行动或决策。
  3. 奖励(Reward):智能体从环境中接收到的反馈信号,用于评估动作的好坏。奖励可以是立即的,也可以是延迟的,取决于任务的性质。
  4. 策略(Policy):策略定义了智能体在给定状态下选择动作的方式。它可以是确定性策略(确定选择一个动作)或概率性策略(选择一个动作的概率分布)。
  5. 值函数(Value Function):值函数估计了在给定状态下执行策略的预期回报或价值。它用于指导智能体在不同状态下选择最优动作。
  6. 环境模型(Environment Model):环境模型描述了环境的动态特性,包括状态转移概率和奖励分布。可以用于模拟环境的演化过程和生成样本数据。
  7. 强化学习算法:强化学习算法用于学习最佳策略,根据智能体与环境的交互数据来更新策略或值函数。

强化学习可以应用于各种问题,如机器人控制、游戏策略、自动驾驶、资源管理等。它强调通过尝试和错误的交互学习,以获得长期的累积奖励。强化学习的关键挑战之一是在探索和利用之间进行权衡,以找到最佳策略。

10.1.3  网络模型设计

在强化学习的网络模型中,每一个自主体是由两个神经网络模块组成,即行动网络和评估网络。行动网络是根据当前的状态而决定下一个时刻施加到环境上去的最好动作。

对于行动网络,强化学习算法允许它的输出结点进行随机搜索,有了来自评估网络的内部强化信号后,行动网络的输出结点即可有效地完成随机搜索并且大大地提高选择好的动作的可能性,同时可以在线训练整个行动网络。用一个辅助网络来为环境建模,评估网络根据当前的状态和模拟环境用于预测标量值的外部强化信号,这样它可单步和多步预报当前由行动网络施加到环境上的动作强化信号,可以提前向动作网络提供有关将候选动作的强化信号,以及更多的奖惩信息(内部强化信号),以减少不确定性并提高学习速度。

进化强化学习对评估网络使用时序差分预测方法TD和反向传播BP算法进行学习,而对行动网络进行遗传操作,使用内部强化信号作为行动网络的适应度函数。网络运算分成两个部分,即前向信号计算和遗传强化计算。在前向信号计算时,对评估网络采用时序差分预测方法,由评估网络对环境建模,可以进行外部强化信号的多步预测,评估网络提供更有效的内部强化信号给行动网络,使它产生更恰当的行动,内部强化信号使行动网络、评估网络在每一步都可以进行学习,而不必等待外部强化信号的到来,从而大大地加速了两个网络的学习。

10.1.4  强化学习算法和深度强化学习

强化学习(Reinforcement Learning)是一种机器学习方法,旨在通过智能体与环境的交互学习最优的决策策略。在强化学习中,智能体根据环境的反馈(奖励信号)来调整其行为,以最大化长期累积的奖励。常用的强化学习算法有价值迭代、策略迭代、Q-learning、蒙特卡洛方法、时序差分学习。

深度强化学习(Deep Reinforcement Learning)是强化学习与深度学习相结合的一种方法。它使用深度神经网络作为函数逼近器,可以直接从原始输入数据(如图像或传感器数据)中学习高级特征表示,并通过这些特征来指导决策过程。

下面是强化学习算法和深度强化学习的主要区别:

  1. 函数逼近器:传统的强化学习算法通常使用表格或线性函数来表示值函数或策略。而深度强化学习使用深度神经网络作为函数逼近器,可以处理高维、复杂的输入数据,并学习更复杂的策略。
  2. 特征表示学习:传统的强化学习算法通常需要手动设计特征表示。深度强化学习可以通过神经网络自动地从原始输入数据中学习特征表示,无需手动设计特征。
  3. 数据效率:传统的强化学习算法通常需要大量的样本和迭代才能学到良好的策略。深度强化学习可以从海量的数据中进行学习,利用深度神经网络的参数化能力,可以更高效地学习到复杂的策略。
  4. 探索与利用:强化学习算法中的探索与利用问题是指在探索未知领域和利用已知知识之间的权衡。传统的强化学习算法通常使用ε-greedy等简单策略来平衡探索和利用。深度强化学习可以使用更复杂的探索策略,如使用随机噪声或基于不确定性的探索方法。
  5. 样本效率:深度强化学习通常需要大量的样本来进行训练,这可能会导致对环境的过度依赖。传统的强化学习算法通常在样本效率上更加高效。

总而言之,深度强化学习通过使用深度神经网络作为函数逼近器和自动学习特征表示,可以处理更复杂的任务和输入数据,并在一定程度上提高学习效率。然而,深度强化学习也面临着样本效率和训练不稳定等挑战,需要更多的注意和技巧来处理。

未完待续

  • 8
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值