8.5.8 盲点检测模块:单目标检测训练框架
在下面的代码中,使用PyTorch实现单目标检测训练框架,支持多种网络架构(如VGG16、MobileNetV1/V2、SqueezeNet等)。通过命令行参数配置数据集类型、网络结构、学习率等超参数,可以进行模型训练和验证。代码加载指定数据集,创建相应的数据转换和数据加载器,构建目标检测网络,定义损失函数和优化器,支持模型的加载和恢复训练。训练过程中实现了学习率调度和定期验证,并保存验证损失最低的模型检查点。
if __name__ == '__main__':
timer = Timer() # 创建计时器对象
logging.info(args) # 打印命令行参数信息
# 确保检查点输出目录存在
if args.checkpoint_folder:
args.checkpoint_folder = os.path.expanduser(args.checkpoint_folder)
if not os.path.exists(args.checkpoint_folder):
os.mkdir(args.checkpoint_folder)