(5-4-04)基于Stable Diffusion的文生图系统:(4)扩散模型

本项目的“diffusionmodules”目录包含了与扩散模型相关的核心组件和工具,包括模型定义、上采样机制、调度策略和实用函数。这些文件共同支持扩散过程的实现,如生成和处理图像的噪声调度、张量操作、网络层构建和参数管理,提供了灵活的基础架构,以便在图像生成任务中实现高效的扩散和上采样操作。

(1)文件model.py定义了一系列用于构建深度学习模型的神经网络模块,包括编码器、解码器、重缩放模块和上采样模块。主要功能是实现一个自编码器结构,用于图像生成和重建任务。通过层叠的残差块和注意力机制,这些模块能够高效地处理输入图像,提取潜在特征,并将其转换为输出图像。文件中的结构设计灵活,支持多种配置参数,以适应不同的应用需求。

import math
import torch
import torch.nn as nn
import numpy as np
from einops import rearrange
from typing import Optional, Any

from ldm.modules.attention import MemoryEfficientCrossAttention

try:
    import xformers
    import xformers.ops
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值