本项目的“diffusionmodules”目录包含了与扩散模型相关的核心组件和工具,包括模型定义、上采样机制、调度策略和实用函数。这些文件共同支持扩散过程的实现,如生成和处理图像的噪声调度、张量操作、网络层构建和参数管理,提供了灵活的基础架构,以便在图像生成任务中实现高效的扩散和上采样操作。
(1)文件model.py定义了一系列用于构建深度学习模型的神经网络模块,包括编码器、解码器、重缩放模块和上采样模块。主要功能是实现一个自编码器结构,用于图像生成和重建任务。通过层叠的残差块和注意力机制,这些模块能够高效地处理输入图像,提取潜在特征,并将其转换为输出图像。文件中的结构设计灵活,支持多种配置参数,以适应不同的应用需求。
import math
import torch
import torch.nn as nn
import numpy as np
from einops import rearrange
from typing import Optional, Any
from ldm.modules.attention import MemoryEfficientCrossAttention
try:
import xformers
import xformers.ops