房价现在已经成为了人们最关注对象之一,些许的风吹草动都会引起大家的注意。在本章的内容中,将详细讲解使用Python语言采集主流网站中国内主流城市房价信息的过程,包括新房价格、二手房价格和房租价格,这些采集的数据可以进一步进行数据分析。
8.1 背景介绍
随着房价的不断升高,人们对房价的关注度也越来越高,房产投资者希望通过对房价数据预判房价走势、从而进行有效的投资,获取收益;因结婚、为小孩上学等需要买房的民众,希望通过房价数据寻找买房的最佳时机, 以最适合的价格购买能满足需要的房产。
在当前市场环境下,因为房价水平牵动了大多数人的心,所以各大房产网都上线了“查房价”相关的功能模块,以满足购房者/计划购房者经常关注房价行情的需求,从而实现增加产品活跃度、促进购房转化的目的。
整个房产网市场用户群大都一样,主要房源资源和营销方式有所差异。然而,以X家和X壳为首的房产网巨头公司的房源,由于有品牌与质量的优势正快速扩张,市场上的推广费用也越来越贵。而购房者迫切希望通过分析找到最精确的房价查询系统。
8.2 需求分析
本项目将提供国内主流城市、每个区域、每个小区的房价成交情况、关注情况、发展走势,乃至每个小区的解读/评判;以此解决用户购房没有价格依据,无从选择购房时机的问题;满足用户及时了解房价行情,以最合适价格购买最合适位置房产的需求。
通过使用本系统可以产生如下所示的价值。
- 增加活跃:由于对房价的关注是中长期性质的,不断更新的行情数据可以增加用户活跃度
- 促进转化:使用房价数据等帮助用户购房推荐合适的位置与价格,可以提高用户的咨询率与成交率。
- 减少跳失:若没有此功能,会导致一些购房观望者,无从得知房价变化,而选择最终离开。
8.3 模块架构
本查房价系统的基本模块架构如图8-1所示。
图8-1 模块结构