5.8 精调选定模型
为了进行精调,我们将使用 Optuna,这是一个高效且易于使用的超参数调优库。首先,我们将从 Histogram-based Gradient Boosting Classifier 的调优开始,然后再进行 CatBoost Classifier 的调优。在超参数搜索过程中,我们仍将使用 ROC-AUC 分数 作为两种模型的评估指标。
5.8.1 超参数调优
下面代码实现了对 Histogram-based Gradient Boosting Classifier 的超参数调优。通过 Optuna 库,在指定范围内搜索超参数,并使用 ROC-AUC 分数作为优化目标。每次迭代,Optuna 将根据试验建议的超参数训练模型,并计算模型在测试集上的 AUC 分数,最终返回最佳的 AUC 分数。
def objective_hbgb(tri