(31-7)使用机器学习预测苹果(AAPL)股票的周收益:精调选定模型

5.8  精调选定模型

为了进行精调,我们将使用 Optuna,这是一个高效且易于使用的超参数调优库。首先,我们将从 Histogram-based Gradient Boosting Classifier 的调优开始,然后再进行 CatBoost Classifier 的调优。在超参数搜索过程中,我们仍将使用 ROC-AUC 分数 作为两种模型的评估指标。

5.8.1  超参数调优

下面代码实现了对 Histogram-based Gradient Boosting Classifier 的超参数调优。通过 Optuna 库,在指定范围内搜索超参数,并使用 ROC-AUC 分数作为优化目标。每次迭代,Optuna 将根据试验建议的超参数训练模型,并计算模型在测试集上的 AUC 分数,最终返回最佳的 AUC 分数。

def objective_hbgb(tri
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值