7.3 专用工具库
通用AI Agent中的专用工具库包含多个重要部分。DialogFlow和Rasa是用于开发对话系统的强大工具,提供了自然语言处理和机器学习功能,适用于创建智能客服和聊天机器人等应用。开源多Agent框架如Mesa和JaCaMo则提供了灵活的多Agent系统建模和仿真能力,支持复杂系统的研究和开发。此外,云端异步处理环境搭建工具,如Manus的虚拟执行环境,能够为AI Agent提供高效的计算资源管理和异步任务处理能力,适用于大规模数据处理和复杂任务调度。
7.3.1 DialogFlow/Rasa对话系统开发
在通用AI Agent开发中,对话系统是至关重要的组件之一。它使AI能够理解和生成自然语言,从而与用户进行交互。DialogFlow和Rasa是两个广泛使用的对话系统平台,它们提供了强大的工具和框架来构建、训练和部署对话模型。
1. DialogFlow 介绍
DialogFlow 是 Google 提供的一款人机交互平台,通过该平台可以轻松地设计出属于自己的交互机器人,比如常见的网页聊天机器人、电话智能客服等。DialogFlow 通过客户输入的语音或者文字甚至情感分析,来识别客户的意图(Intents),结合实体(Entities),来进行相应的回复。DialogFlow 的主要优点如下所示:
- 识别准确率高,响应速度快
- 支持 30 多种语言和语言变体
- 上手简单:图形界面配置;官方文档丰富、详细;网络上有案例可供参考
- 有问题易解决:开发者社区超过 150 万名开发者
DialogFlow 提供了多个预定义后续意图,旨在处理“是”、“否”或“取消”等常见的最终用户回复。您还可以创建自己的后续意图来处理自定义回复。DialogFlow 可以与 Google 助理、Slack 和 Facebook Messenger 等许多热门对话平台集成。如果您想要为上述某个平台构建代理,建议从众多集成方案中择一使用。这些集成服务会为您处理直接的最终用户互动,因此您可以集中精力构建代理。每项集成服务均以平台特定的方式处理最终用户互动。如需了解详情,请参阅与您的集成平台对应的文档。
2. Rasa 介绍
Rasa 是一个开源的机器学习框架,用于自动化基于文本和语音的助理。Rasa 几乎覆盖了对话系统的所有功能,是目前主流的开源机器对话机器人框架。Rasa 框架主要包含以下几个部分:
- Rasa NLU:提取用户想要做什么和关键的上下文信息。
- Rasa Core:基于对话历史,选择最优的回复和动作。
- 通道(channel)和动作(action):连接对话机器人与用户及后端服务系统,支持即时通信软件对接 Rasa。
- tracker store、lock store、event broker 等辅助系统。
Rasa 的核心工作逻辑如下:
- 用户输入:用户通过各种渠道(如命令行、聊天界面等)向 Rasa 发送自然语言输入。
- NLU 处理:NLU 模块接收用户输入并进行自然语言理解,将其转化为结构化的数据,如意图、实体等。
- Core 处理:Core 模块接收 NLU 输出的数据,根据对话状态和策略进行对话管理和决策,选择下一步的动作。
- Action 执行:选择的动作被发送到 Action 服务器,执行自定义的动作逻辑,可能包括与外部系统的交互。
- Tracker 更新:对话状态和上下文信息在 Tracker 中更新,以便后续使用。
- 响应生成:根据动作执行的结果,Rasa 生成相应的响应消息,以回复用户的请求。
- 响应输出:生成的响应消息通过合适的渠道(如聊天界面、API 等)发送给用户。
Rasa 的一大特点是其高度的可定制性,开发者可以通过编写自定义的组件来扩展其功能。此外,Rasa 还提供了丰富的文档和社区支持,使得初学者也能快速上手。Rasa 适用于企业级应用,如客户服务、虚拟助手和知识管理系统。
3. 总结
DialogFlow与Rasa的对比与选择如表7-1所示。
表7-1 DialogFlow与Rasa的对比与选择
特性/平台 | DialogFlow | Rasa |
自然语言理解(NLU) | 强大,基于Google的NLP技术 | 强大,高度可定制 |
对话管理 | 内置对话管理器,易于使用 | 灵活的故事和规则机制 |
多语言支持 | 支持多种语言 | 支持多种语言,可定制 |
集成能力 | 与Google生态系统无缝集成 | 支持多种集成方式,灵活性高 |
部署选项 | 云端托管 | 本地部署或云端部署 |
成本 | 免费版有限制,企业版收费 | 开源免费 |
总之,DialogFlow 和 Rasa 都是强大的对话系统开发工具,各有优缺点。DialogFlow 适合快速搭建和集成,而 Rasa 则适合需要高度定制化和数据隐私保护的场景。选择哪种工具取决于具体的项目需求和开发团队的技术背景。
7.3.2 开源多Agent框架
多Agent框架允许开发者创建、管理和协调多个智能代理,这些代理可以协同工作以解决复杂的问题。Mesa和JaCaMo是两个广泛使用的开源多Agent框架,它们各有特点,适用于不同的应用场景。以下是对这两个框架的详细介绍及其在AI Agent开发中的应用。
1. Mesa
Mesa是一个基于Python的轻量级多Agent仿真框架,专为模拟复杂的自适应系统而设计。它非常适合用于社会科学、经济学和其他需要模拟大量交互个体的领域。Mesa提供了简单直观的API,使得构建和运行多Agent仿真变得非常容易。Mesa的主要特性如下所示:
- 轻量级:易于上手,适合快速原型开发。
- 灵活性:支持多种类型的Agent和环境配置。
- 可视化工具:内置了简单的可视化工具,便于调试和展示仿真结果。
- 扩展性:可以通过插件和自定义组件进行扩展。
在使用Mesa之前需要先安装Mesa,安装命令如下所示:
pip install mesa
例如下面的代码展示了使用Mesa创建一个多Agent模型的用法。
from mesa import Agent, Model
from mesa.time import RandomActivation
from mesa.space import MultiGrid
import matplotlib.pyplot as plt
class MyAgent(Agent):
def __init__(self, unique_id, model):
super().__init__(unique_id, model)
self.wealth = 1
def step(self):
# 每个时间步执行的动作
self.move()
if self.wealth > 0:
self.give_money()
def move(self):
possible_steps = self.model.grid.get_neighborhood(
self.pos,
moore=True,
include_center=False)
new_position = self.random.choice(possible_steps)
self.model.grid.move_agent(self, new_position)
def give_money(self):
cellmates = self.model.grid.get_cell_list_contents([self.pos])
if len(cellmates) > 1:
other = self.random.choice(cellmates)
other.wealth += 1
self.wealth -= 1
class MyModel(Model):
def __init__(self, N, width, height):
self.num_agents = N
self.grid = MultiGrid(width, height, True)
self.schedule = RandomActivation(self)
# 创建代理
for i in range(self.num_agents):
a = MyAgent(i, self)
self.schedule.add(a)
# 添加代理到网格中
x = self.random.randrange(self.grid.width)
y = self.random.randrange(self.grid.height)
self.grid.place_agent(a, (x, y))
def step(self):
self.schedule.step()
# 运行模型
model = MyModel(10, 10, 10)
for i in range(100):
model.step()
# 可视化结果
agent_counts = np.zeros((model.grid.width, model.grid.height))
for cell in model.grid.coord_iter():
cell_content, x, y = cell
agent_counts[x][y] = len(cell_content)
plt.imshow(agent_counts, interpolation='nearest')
plt.colorbar()
plt.show()
2. JaCaMo
JaCaMo(Java + CArtAgO + Moise)是一个强大的多Agent系统开发平台,集成了Java编程语言、CArtAgO(用于建模和仿真环境)和Moise(用于组织和角色管理)。JaCaMo特别适合于复杂的分布式系统和协作任务,提供了高度模块化的架构,支持大规模系统的开发。
JaCaMo的主要特性如下所示:
- 模块化架构:包括Agent、Artifact和Organization三个主要模块,分别负责不同的功能。
- 丰富的API:提供了丰富的API来处理Agent行为、环境交互和组织管理。
- 分布式支持:支持分布式部署,适合构建跨网络的多Agent系统。
- 扩展性:可以通过插件和自定义组件进行扩展。
例如下面是一个简单的JaCaMo项目结构示例:
myProject/
agents/
Agent1/
sources/
Agent1.asl
configuration/
Agent1.cfg
Agent2/
sources/
Agent2.asl
configuration/
Agent2.cfg
environment/
sources/
Environment.java
configuration/
Project.cfg
3. 对比与总结
- Mesa:更适合于使用Python进行开发,并且需要对智能体行为进行简单到中等复杂度建模的场景。它的模块化设计和易于使用的特性使得快速构建和仿真多智能体模型变得容易,尤其是在社会科学、生物学等领域的模拟研究中具有优势。
- JaCaMo:适用于更复杂的多Agent系统开发,特别是当项目需要强大的智能体通信和协作功能、以及对智能体运行环境进行精细建模时。它基于Java的实现和综合的开发工具链,使其在构建大型、复杂的多Agent应用时表现出色,如智能交通、多机器人协调等场景。
在实际应用中,具体选择哪个框架取决于具体的项目需求、开发语言偏好以及对智能体行为和环境建模的复杂度要求。
7.3.3 云端异步处理环境搭建
通用AI Agent的云端异步处理环境搭建主要涉及以下几个方面:
- Manus框架:Manus是全球首款通用AI代理技术,其核心架构包含规划、执行与验证代理,支持云端异步处理与动态策略调整,可独立完成从任务拆解到成果输出的全流程。它适用于生成教学材料、自动化财报分析、个性化旅行规划及代码开发部署等场景,能够通过云端异步处理支持长时间任务的托管,例如股票分析案例等。
- AutoGen框架:AutoGen支持Python和.NET,开发人员可以配置代理,在执行特定任务之前请求人类用户的指导或批准。代理通过异步消息进行通信,支持事件驱动和请求/响应交互模式。例如,可以创建多个智能体并管理它们的协作,通过GroupChat和GroupChatManager来实现多智能体的对话和任务处理。
- Phidata框架:Phidata是一个基于Python的框架,能够将大型语言模型(LLM)转化为AI产品中的Agent。它支持多种主流的大厂闭源和开源LLM,并提供会话快照、API调用、token使用情况等监控关键指标,同时内置Agent UI,支持灵活部署,可以将Agent发布到GitHub或任何云服务,也可以连接AWS账户将其部署到生产环境。
- OpenAI Swarm框架:OpenAI Swarm允许开发者创建和管理多个智能体,这些智能体可以通过异步方式相互通信和协作。例如,可以定义智能体A接收用户消息并转接给智能体B,智能体B以特定格式回复,通过Swarm客户端的run函数来处理消息传递和智能体间的协作。
这些框架和工具为搭建通用AI Agent的云端异步处理环境提供了不同的实现方式和优势,开发者可以根据具体需求选择合适的工具来构建高效的AI Agent系统。