(4-4-01)环境感知与决策模块:多智能体协同架构(1)规划代理与任务分解策略

3.4  多智能体协同架构

多智能体协同架构是一种通过多个智能体之间的协作、竞争或协调来实现复杂任务的系统设计方法。它允许智能体在分布式环境中自主决策,并通过信息共享和任务分配提高系统的整体性能。这种架构广泛应用于机器人团队协作、智能交通系统和分布式传感器网络等领域,能够有效处理复杂、动态和不确定的任务。

3.4.1  规划代理与任务分解策略

规划代理是通用AI Agent系统中的核心组件之一,负责将复杂任务分解为可管理的子任务,并制定详细的执行计划。

1. 规划代理介绍

规划代理的主要功能是将大型复杂任务分解为一系列可管理的子任务,并为每个子任务制定详细的执行计划。它通过评估不同的路径和策略,选择最优的行动计划来实现用户的目标。规划代理能够基于已有的动作进行自我批评和反思,从错误中学习并优化后续的动作,从而提高任务完成的质量和效率。

2. 任务分解策略

任务分解是规划代理的关键环节,常见的策略包括:

  1. Chain of Thought (CoT):将复杂任务分解为一系列简单的步骤,引导模型逐步解决复杂问题。例如,在数学问题求解中,将问题分解为多个步骤,每一步解决一个小问题。
  2. Tree of Thoughts (ToT):扩展了CoT的思想,通过构建树形结构来探索多个可能的推理路径。每个节点代表一个思考步骤,生成多个想法,通过广度优先搜索或深度优先搜索来确定最优路径。
  3. 基于提示的分解:使用简单的提示或特定任务的指令来引导任务分解。例如,通过提问“实现目标A的步骤是什么?”来引导模型进行任务分解。

3. 应用案例

规划代理在多个领域都有广泛的应用,以下是一些典型的案例:

  1. 智能助手:在处理复杂用户请求时,规划代理将任务分解为多个子任务,例如信息检索、内容生成和任务调度,以提高响应的准确性和效率。
  2. 机器人导航:在复杂的环境中,规划代理负责将导航任务分解为路径规划、障碍物避让和目标定位等子任务,确保机器人能够安全、高效地到达目标位置。
  3. 工业自动化:在生产线调度中,规划代理将生产任务分解为原材料准备、加工、装配和质量检测等子任务,优化生产流程,提高生产效率和产品质量。

4. 规划代理的实现方法

在实现规划代理时,通常会结合大语言模型(LLM)的强大语言理解和生成能力。LLM能够进行全面的规划,不仅仅是简单的任务拆分,还可以评估不同的路径和策略,制定最佳的行动计划。此外,还可以使用分层强化学习(HRL)方法,将任务分解为多个层次,每个层次负责不同的子任务,通过层次间的协作和协调来完成复杂任务。

例如下面是一个多智能体协同的 AI Agent 应用程序,演示规划代理与任务分解策略的用法。这个例子模拟了一个高层任务(例如“清洁房屋”)由规划代理分解成多个子任务,并由多个工作智能体(Worker Agent)并行执行,最后协调输出结果。

实例3-1:规划代理与任务分解策略的用法(源码路径:codes\3\Gui.py)

实例文件Gui.py的具体实现代码如下所。

import threading
import time

# 定义任务类
class Task:
    def __init__(self, description, duration):
        self.description = description  # 子任务描述
        self.duration = duration        # 执行该任务所需的时间(秒)

# 工作智能体:负责执行具体子任务
class WorkerAgent:
    def __init__(self, name):
        self.name = name

    def execute(self, task):
        print(f"{self.name} 开始执行任务:{task.description}")
        time.sleep(task.duration)  # 模拟任务执行所需时间
        result = f"{task.description} 完成"
        print(f"{self.name} 完成任务:{task.description}")
        return result

# 规划代理:负责接收高层任务、进行任务分解并协调工作智能体执行
class PlanningAgent:
    def __init__(self):
        # 初始化一组工作智能体
        self.workers = [WorkerAgent("Worker1"), WorkerAgent("Worker2"), WorkerAgent("Worker3")]

    def decompose_task(self, high_level_task):
        """
        任务分解策略:根据高层任务分解出多个子任务
      
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值