Batch Size---深度学习---基础知识

Batch Size定义:一次训练所选取的样本数。 
Batch Size的大小影响模型的优化程度和速度。同时其直接影响到训练单元(如GPU)的内存的使用情况,假如你训练单元(如GPU)内存不大,该数值最好设置小一点。

Batch Size设置合适时的优点: 
1、通过并行化提高内存的利用率。就是尽量让你的训练单元(如GPU)满载运行,提高训练速度。 内存的利用率提高了,大矩阵乘法的并行化效率提高。

2、单个epoch(全数据集)的迭代次数减少了,参数的调整也慢了,假如要达到相同的识别精度,需要更多的epoch。 

3、适当Batch Size使得梯度下降方向更加准确。

盲目增大的坏处有三点:

1、当数据集太大时,内存搞不定。

2、跑完一次epocffe-master/tools/extra/parse_log.sh  caffe-master/tools/extra/extract_seconds.py和h(全数据集)所需迭代次数减少了,但要想达到相同的精度,时间开销太大,参数的修正更加缓慢。

3、batchsize增大到一定的程度,其确定的下降方向已经基本不再变化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值