Linear_regression与 Logistic_regression简单比较与python实现

本文对比了Linear Regression和Logistic Regression两种机器学习算法,探讨了它们在估价函数上的差异,并分别展示了两种算法的Python实现。尽管两者都是监督学习并使用相似的迭代方法,但目标函数的不同是它们的关键区别。
摘要由CSDN通过智能技术生成

Linear_regression与 Logistic_regression简单比较与python实现

好久没写博客了,在度厂实习期间更是天天累成了狗的节奏,最近有幸蹭到隔壁组老大小黑黑关于machine learning这块的培训(以下图片均摘自小黑黑的PPT),甚是感动,决定好好学习下这块的东西。

Linear_regression 和 Logistic_regression 其实是非常相似的两种算法。它们都属于监督学习,都可以用梯度下降等方法进行参数的迭代学习等等。
他们最大的不同应该说是 估价函数的不同。

这里写图片描述

此外Linear_regression 的 cost function:
这里写图片描述

Logistic_regression 的 cost function :
这里写图片描述

即我们的最终目标是要求出使得 J(theta)最小时theta的值。采取的方法均为类似梯度下降法的方法。
这里写图片描述

这里写图片描述

最后给出两种算法的python实现:

Linear_regression

import sys

MAX_FEATURE_DIMENSION = 1024
MAX_SAMPLE_NUMBER = 1024
MAX_ITERATE_NUMBER = 1024

##求导
def compute_gradient(x,y,theta,feature_number,feature_pos,sample_number):
    sum = 0.0
    for i in range(sample_number):
        res = 0.0
        for j in range(feature_number+1):
            res += x[i][j] * theta[j]
        sum += (res - y[i])*x[i][feature_pos]
    return sum/sample_number

##估价函数
def compute_cost(x,y,theta,feature_number,sample_number):
    sum = 0.0
    for i in range(sample_number):
        res = 0.0
        for j in range(feature_number+
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值