GPU 驱动兼容性要求
部署 DeepSeek-V3.2-Exp DSA 需要确保 GPU 驱动版本满足以下最低要求:
- NVIDIA 驱动版本:≥ 515.65.01(推荐 525.60.13 或更高)
- CUDA 工具包:≥ 11.7(推荐 12.1 或更高)
- cuDNN:≥ 8.5.0(推荐 8.9.5)
支持以下 GPU 架构:
- NVIDIA Ampere(RTX 30/40 系列,A100, H100 等)
- NVIDIA Turing(RTX 20 系列,T4 等)
- NVIDIA Volta(V100 等)
驱动安装与验证
检查当前驱动版本:
nvidia-smi
输出应包含驱动版本、CUDA 版本及 GPU 型号信息。
更新 NVIDIA 驱动(Linux):
sudo apt-get install --install-recommends nvidia-driver-535
安装 CUDA 和 cuDNN:
wget https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run
sudo sh cuda_12.1.0_530.30.02_linux.run
cuDNN 需从 NVIDIA 官网下载并手动安装。
常见兼容性问题
- 驱动版本过低:导致模型加载失败或性能下降,需升级至推荐版本。
- CUDA/cuDNN 不匹配:确保 CUDA 版本与驱动版本兼容(参考 NVIDIA 官方文档)。
- 旧架构 GPU(Maxwell/Pascal):DeepSeek-V3.2-Exp DSA 不再支持,需更换至 Turing/Ampere 架构。
容器化部署支持
支持 NVIDIA Container Toolkit(Docker 运行时需启用 --gpus all):
docker run --gpus all deepseek/deepseek-v3.2-exp-dsa:latest
确保主机驱动版本 ≥ 容器内驱动要求。
性能优化建议
- 启用 FP16/Tensor Cores(Ampere/Turing GPU):在模型配置中设置
torch_dtype=torch.float16。 - 调整 GPU 内存分配:使用
CUDA_VISIBLE_DEVICES控制多卡负载。 - 监控 GPU 使用率:通过
nvtop或nvidia-smi -l 1实时查看显存占用。
187

被折叠的 条评论
为什么被折叠?



