滑块验证码是一种常见的验证机制,它通过要求用户拖动一个滑块,使其与目标图片上的缺口对齐,从而验证用户的真实性。在本文中,我们将使用 Euphoria 编写一个程序,来实现这一滑块验证码识别和验证过程。
代码概览
首先,我们将使用 Euphoria 来获取验证码的图片,并对图片进行处理以去除黑边,最终模拟滑块移动。
获取滑块验证码图片
我们首先需要从网页中获取滑块和目标图片,保存到本地文件中。这是代码的第一步:
euphoria
include std/io.e
include std/net/http.e
include std/sequence.e
include std/image.e
procedure get_img(sequence target, sequence template)
-- 从网页获取图片URL
sequence target_url = "https://example.com/target_img.jpg"
sequence template_url = "https://example.com/template_img.jpg"
-- 下载并保存图片
object target_img = http_get(target_url)
object template_img = http_get(template_url)
if sequence(target_img) and sequence(template_img) then
write_file(target, target_img)
write_file(template, template_img)
puts(1, "Images saved successfully.\n")
else
puts(1, "Failed to download images.\n")
end if
end procedure
去除滑块图片的黑边
为了提高滑块验证码匹配的准确性,我们需要对滑块图片进行处理,去除黑边。我们可以使用 Euphoria 内置的图像处理库来进行图片的中值滤波和裁剪:
euphoria
procedure change_size(sequence img_file)
-- 读取图片
object img = load_image(img_file)
if not atom(img) then
-- 图像处理:去除噪声并裁剪黑边
sequence processed_img = median_filter(img, 5)
object binary_img = threshold(processed_img, 15, 255)
-- 裁剪黑边
integer left = 0, right = length(binary_img[1]), top = 0, bottom = length(binary_img)
-- 裁剪逻辑(简化版)
processed_img = crop_image(binary_img, left, top, right, bottom)
-- 保存处理后的图片
save_image("processed_" &更多内容联系1436423940 img_file, processed_img)
puts(1, "Image processed successfully.\n")
else
puts(1, "Failed to load image.\n")
end if
end procedure
计算缺口位置
接下来,我们将利用模板匹配算法来确定滑块缺口的位置。通过对比目标图片和滑块图片,确定滑块应该滑动的距离。
euphoria
procedure match(sequence target, sequence template)
-- 加载图片
object target_img = load_image(target)
object template_img = load_image(template)
if not atom(target_img) and not atom(template_img) then
-- 模板匹配算法(简化版)
integer x_offset = find_template(target_img, template_img)
if x_offset > 0 then
printf(1, "Match found at offset: %d\n", x_offset)
return x_offset
else
puts(1, "No match found.\n")
end if
else
puts(1, "Failed to load images for matching.\n")
end if
return -1
end procedure
模拟滑块的移动
最后一步是模拟用户拖动滑块。我们将生成模拟的轨迹,并利用这些轨迹来“滑动”滑块。
euphoria
procedure get_tracks(integer distance)
sequence tracks = {}
integer current = 0
while current < distance do
integer step = rand(10) -- 模拟随机步长
if current + step > distance then
step = distance - current
end if
current += step
tracks = append(tracks, step)
end while
return tracks
end procedure
procedure move_slider(integer distance)
sequence tracks = get_tracks(distance)
for i = 1 to length(tracks) do
-- 模拟滑动行为
printf(1, "Sliding by %d pixels.\n", tracks[i])
end for
puts(1, "Slider moved successfully.\n")
end procedure
完整代码
以下是完整的 Euphoria 代码,包括获取图片、处理图片、计算滑块位置以及模拟滑动的过程:
euphoria
include std/io.e
include std/net/http.e
include std/sequence.e
include std/image.e
procedure get_img(sequence target, sequence template)
sequence target_url = "https://example.com/target_img.jpg"
sequence template_url = "https://example.com/template_img.jpg"
object target_img = http_get(target_url)
object template_img = http_get(template_url)
if sequence(target_img) and sequence(template_img) then
write_file(target, target_img)
write_file(template, template_img)
puts(1, "Images saved successfully.\n")
else
puts(1, "Failed to download images.\n")
end if
end procedure
procedure change_size(sequence img_file)
object img = load_image(img_file)
if not atom(img) then
sequence processed_img = median_filter(img, 5)
object binary_img = threshold(processed_img, 15, 255)
integer left = 0, right = length(binary_img[1]), top = 0, bottom = length(binary_img)
processed_img = crop_image(binary_img, left, top, right, bottom)
save_image("processed_" & img_file, processed_img)
puts(1, "Image processed successfully.\n")
else
puts(1, "Failed to load image.\n")
end if
end procedure
procedure match(sequence target, sequence template)
object target_img = load_image(target)
object template_img = load_image(template)
if not atom(target_img) and not atom(template_img) then
integer x_offset = find_template(target_img, template_img)
if x_offset > 0 then
printf(1, "Match found at offset: %d\n", x_offset)
return x_offset
else
puts(1, "No match found.\n")
end if
else
puts(1, "Failed to load images for matching.\n")
end if
return -1
end procedure
procedure get_tracks(integer distance)
sequence tracks = {}
integer current = 0
while current < distance do
integer step = rand(10)
if current + step > distance then
step = distance - current
end if
current += step
tracks = append(tracks, step)
end while
return tracks
end procedure
procedure move_slider(integer distance)
sequence tracks = get_tracks(distance)
for i = 1 to length(tracks) do
printf(1, "Sliding by %d pixels.\n", tracks[i])
end for
puts(1, "Slider moved successfully.\n")
end procedure
-- 主程序
sequence target = "target.jpg"
sequence template = "template.png"
get_img(target, template)
change_size(template)
integer distance = match(target, template)
move_slider(distance)