使用 Euphoria 语言进行滑块验证码识别和处理


滑块验证码是一种常见的验证机制,它通过要求用户拖动一个滑块,使其与目标图片上的缺口对齐,从而验证用户的真实性。在本文中,我们将使用 Euphoria 编写一个程序,来实现这一滑块验证码识别和验证过程。

代码概览
首先,我们将使用 Euphoria 来获取验证码的图片,并对图片进行处理以去除黑边,最终模拟滑块移动。

获取滑块验证码图片
我们首先需要从网页中获取滑块和目标图片,保存到本地文件中。这是代码的第一步:

euphoria

include std/io.e
include std/net/http.e
include std/sequence.e
include std/image.e

procedure get_img(sequence target, sequence template)
    -- 从网页获取图片URL
    sequence target_url = "https://example.com/target_img.jpg"
    sequence template_url = "https://example.com/template_img.jpg"

    -- 下载并保存图片
    object target_img = http_get(target_url)
    object template_img = http_get(template_url)

    if sequence(target_img) and sequence(template_img) then
        write_file(target, target_img)
        write_file(template, template_img)
        puts(1, "Images saved successfully.\n")
    else
        puts(1, "Failed to download images.\n")
    end if
end procedure
去除滑块图片的黑边
为了提高滑块验证码匹配的准确性,我们需要对滑块图片进行处理,去除黑边。我们可以使用 Euphoria 内置的图像处理库来进行图片的中值滤波和裁剪:

euphoria

procedure change_size(sequence img_file)
    -- 读取图片
    object img = load_image(img_file)

    if not atom(img) then
        -- 图像处理:去除噪声并裁剪黑边
        sequence processed_img = median_filter(img, 5)
        object binary_img = threshold(processed_img, 15, 255)

        -- 裁剪黑边
        integer left = 0, right = length(binary_img[1]), top = 0, bottom = length(binary_img)
        -- 裁剪逻辑(简化版)
        processed_img = crop_image(binary_img, left, top, right, bottom)

        -- 保存处理后的图片
        save_image("processed_" &更多内容联系1436423940 img_file, processed_img)
        puts(1, "Image processed successfully.\n")
    else
        puts(1, "Failed to load image.\n")
    end if
end procedure
计算缺口位置
接下来,我们将利用模板匹配算法来确定滑块缺口的位置。通过对比目标图片和滑块图片,确定滑块应该滑动的距离。

euphoria

procedure match(sequence target, sequence template)
    -- 加载图片
    object target_img = load_image(target)
    object template_img = load_image(template)

    if not atom(target_img) and not atom(template_img) then
        -- 模板匹配算法(简化版)
        integer x_offset = find_template(target_img, template_img)

        if x_offset > 0 then
            printf(1, "Match found at offset: %d\n", x_offset)
            return x_offset
        else
            puts(1, "No match found.\n")
        end if
    else
        puts(1, "Failed to load images for matching.\n")
    end if

    return -1
end procedure
模拟滑块的移动
最后一步是模拟用户拖动滑块。我们将生成模拟的轨迹,并利用这些轨迹来“滑动”滑块。

euphoria

procedure get_tracks(integer distance)
    sequence tracks = {}
    integer current = 0
    while current < distance do
        integer step = rand(10)  -- 模拟随机步长
        if current + step > distance then
            step = distance - current
        end if
        current += step
        tracks = append(tracks, step)
    end while

    return tracks
end procedure

procedure move_slider(integer distance)
    sequence tracks = get_tracks(distance)

    for i = 1 to length(tracks) do
        -- 模拟滑动行为
        printf(1, "Sliding by %d pixels.\n", tracks[i])
    end for

    puts(1, "Slider moved successfully.\n")
end procedure
完整代码
以下是完整的 Euphoria 代码,包括获取图片、处理图片、计算滑块位置以及模拟滑动的过程:

euphoria

include std/io.e
include std/net/http.e
include std/sequence.e
include std/image.e

procedure get_img(sequence target, sequence template)
    sequence target_url = "https://example.com/target_img.jpg"
    sequence template_url = "https://example.com/template_img.jpg"

    object target_img = http_get(target_url)
    object template_img = http_get(template_url)

    if sequence(target_img) and sequence(template_img) then
        write_file(target, target_img)
        write_file(template, template_img)
        puts(1, "Images saved successfully.\n")
    else
        puts(1, "Failed to download images.\n")
    end if
end procedure

procedure change_size(sequence img_file)
    object img = load_image(img_file)

    if not atom(img) then
        sequence processed_img = median_filter(img, 5)
        object binary_img = threshold(processed_img, 15, 255)

        integer left = 0, right = length(binary_img[1]), top = 0, bottom = length(binary_img)
        processed_img = crop_image(binary_img, left, top, right, bottom)

        save_image("processed_" & img_file, processed_img)
        puts(1, "Image processed successfully.\n")
    else
        puts(1, "Failed to load image.\n")
    end if
end procedure

procedure match(sequence target, sequence template)
    object target_img = load_image(target)
    object template_img = load_image(template)

    if not atom(target_img) and not atom(template_img) then
        integer x_offset = find_template(target_img, template_img)

        if x_offset > 0 then
            printf(1, "Match found at offset: %d\n", x_offset)
            return x_offset
        else
            puts(1, "No match found.\n")
        end if
    else
        puts(1, "Failed to load images for matching.\n")
    end if

    return -1
end procedure

procedure get_tracks(integer distance)
    sequence tracks = {}
    integer current = 0
    while current < distance do
        integer step = rand(10)
        if current + step > distance then
            step = distance - current
        end if
        current += step
        tracks = append(tracks, step)
    end while

    return tracks
end procedure

procedure move_slider(integer distance)
    sequence tracks = get_tracks(distance)

    for i = 1 to length(tracks) do
        printf(1, "Sliding by %d pixels.\n", tracks[i])
    end for

    puts(1, "Slider moved successfully.\n")
end procedure

-- 主程序
sequence target = "target.jpg"
sequence template = "template.png"
get_img(target, template)
change_size(template)
integer distance = match(target, template)
move_slider(distance)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值