滑块验证码是一种常见的用户验证机制,通常用于防止自动化脚本的攻击。本篇文章将通过使用Fantom编程语言来模拟滑块验证码的识别和破解流程。本文主要包括以下内容:下载滑块验证码图片、计算滑块距离、生成模拟滑动轨迹、加密滑动数据并发送验证请求。
环境设置
确保已安装Fantom,并设置好开发环境:
bash
fanr install -r http://repo.status302.com/ afFantom/fantomBase
第一步:获取滑块验证码图片并计算滑动距离
首先,我们需要获取滑块的前景图片和背景图片,通过图像处理的方法计算出滑块的滑动距离。
fantom
using afIoc::Internet
class CaptchaSolver {
static Int calculateDistance(Str fgUrl, Str bgUrl) {
// 下载前景和背景图片
fgImage := Http.get(fgUrl).readAll
bgImage := Http.get(bgUrl).readAll
// 将图片数据转换为图像对象
fg := Image.readFromStream(fgImage)
bg := Image.readFromStream(bgImage)
// 对比两张图片以找到滑动距离
distance := compareImages(fg, bg)
return distance
}
static Int compareImages(Image fg, Image bg) {
// 简单图像像素对比,返回滑动距离
for (x := 0; x < fg.width; x += 1) {
if (fg.pixel(x, 0) != bg.pixel(x, 0)) {
return x
}
}
return -1 // 找不到匹配
}
}
第二步:生成滑动轨迹
接下来,我们需要模拟滑动的轨迹,包括滑动的x、y坐标以及时间间隔。模拟轨迹时,滑动速度可以不均匀,以符合人类操作习惯。
fantom
class TrajectoryGenerator {
static List<[Int, Int, Int]> generate(Int distance) {
List<[Int, Int, Int]> trajectory := []
// 起点为 [0, 0, 0]
trajectory.add([0, 0, 0])
for (i := 1; i <= distance; i += 1) {
x := i
y := Rand.randomInt(-1, 2) // 随机上下波动
t := i * 10
trajectory.add([x, y, t])
}
return trajectory
}
}
第三步:加密滑动数据
为了模仿真实请求,滑动数据通常会使用加密算法。根据滑块验证码的实现,我们需要对轨迹数据进行加密,这里使用DES加密算法。
fantom
更多内容联系1436423940
using crypt::Des
class Encryptor {
static Str encryptData(Str message, Str key) {
des := Des(key.toBuf)
// 填充消息
paddedMessage := padMessage(message)
// 加密并转换为Base64
encrypted := des.encrypt(paddedMessage.toBuf)
return encrypted.toBase64
}
static Str padMessage(Str message) {
while (message.size % 8 != 0) {
message += "\0"
}
return message
}
}
第四步:发送验证请求
最后一步是将生成的滑动轨迹数据加密后,发送到服务器进行验证。
fantom
class VerificationSender {
static Void sendVerification(Str encryptedData) {
url := "https://captcha-api.com/verify"
req := HttpRequest(url, HttpMethod.post)
req.body = Json.encode(["data": encryptedData])
res := req.send
echo("服务器返回:" + res.body.readAllStr)
}
}