D. Game on Axis codeforces1787D

72 篇文章 0 订阅
20 篇文章 0 订阅

Problem - D - Codeforces

题目大意:有n个点,每个点都指向它后面的第ai个点,现可以任选一个点,然后赋予一个新的ai的值,使从第1个点开始最终能走到编号小于1或大于n的点,问可行的方案数是多少

1<=n<=2e5;-n<=ai<=n

思路:首先,我们可以把第n+1个点作为终点,然后将所有指向编号小于1和大于n的点都指向终点,可以发现,建出来的图是一棵单向树,所有点都向根节点的方向指,所以要遍历它,我们需要反向建边,这样的话我们的目标就是要从终点出发走到1号点。

然后我们发现,如果在不做任何修改的情况下就能从1到终点,非法的方案数是很容易统计的,在从1到终点的这条路径上,对于每一个点,将指向终点方向的那条边指向自己或前驱节点,就会构成环,无法到达终点,同时在图中除了终点和1号点构成的树,还有其他的含环的连通分量,连接这些连通分量中的任意点也无法到达终点,所以要求出路径上每个点的前驱节点,在反向建边的情况下,就是求子节点数,用dfs即可简单求出,其他连通分量的点数就用n-树的大小即可

如果在不做修改的情况下,从1无法到达终点,那么可行的方案就是将1所连的连通分量的点连接到终点所在的连通分量上,同时要注意每个点都有n+1种方案是可以直接连到终点上的,按此法从1开始统计到 出现循环即可

//#include<__msvc_all_public_headers.hpp>
#include<bits/stdc++.h>
using namespace std;
const int N = 2e5 + 5;
typedef long long ll;
int head[N];
struct Edge
{
	int v, next;
}e[N];//链式前向星存图
int tot = 0;
void addedge(int u, int v)
{
	e[++tot].v = v;
	e[tot].next = head[u];
	head[u] = tot;
}		
ll n;
bool vis[N];
bool vis2[N];
void init()
{
	for (int i = 1; i <= n + 1; i++)
	{
		head[i] = -1;
		vis[i] = 0;
		vis2[i] = 0;
	}
	tot = 0;
}
ll pre[N];
int ne[N];
void dfs(int u)
{
	pre[u] = 1;
	for (int i = head[u]; ~i; i = e[i].next)
	{
		int v = e[i].v;
		if (vis[v])
		{
			continue;
		}
		vis[v] = 1;
		dfs(v);
		pre[u] += pre[v];//记录当前图的后继节点数,也就是原图的前驱节点数
	}
}
int main()
{
	cin.tie(0);
	ios::sync_with_stdio(false);
	int t;
	cin >> t;
	while (t--)
	{
		cin >> n;
		init();
		for (int i = 1; i <= n; i++)
		{
			int v;
			cin >> v;
			ne[i] = i + v;//记录每个点实际指向的节点
			if (i + v < 1 || i + v > n)
			{//终点同意记为n+1
				ne[i] = n + 1;
			}			
			addedge(ne[i], i);//反向建边
		}
		dfs(n + 1);//从终点开始遍历
		pre[n + 1]--;//终点不计入树的大小
		ll ans = 0;//记录方案数
		if (vis[1])
		{//终点和11号点联通
			ans = (2 * n + 1) * n;//最大方案数
			int cur = 1;
			while (cur != n + 1)
			{//遍历从1到终点的路径
				ans -= pre[cur] + n - pre[n + 1];//当前点的前驱节点数和图中树外节点数
				cur = ne[cur];
			}
			cout << ans << endl;
			continue;
		}
		int cur = 1;
		while (!vis2[cur])
		{//从1开始走知道成环
			ans += n + 1 + pre[n + 1];//终点所在的连通分量的大小+重合的终点数
			vis2[cur] = 1;
			cur = ne[cur];
		}
		cout << ans << endl;
	}			
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

timidcatt

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值