E. Between codeforces 1816E

10 篇文章 0 订阅
文章描述了一道编程竞赛题,要求构造一个满足特定规则的数组,包括唯一的一个1,以及数对间的排列条件。通过从1开始,建立有向图并使用BFS算法确定每个数字的出现次数,判断数组长度是否有限,并找出最大长度及对应数组。
摘要由CSDN通过智能技术生成

Problem - E - Codeforces

题目大意:给出一个数n和m个形如(a,b)的数对,要求按以下规则构造一个数组:

规则1:所有数都在1到n之间

规则2:有且只有1个1

规则3:对于所有数对(a,b)在数组中每两个等于a的数中间至少有一个b

规则4:在满足以上规则的情况下求最长的数组

判断符合所有要求的数组长度是否是有限的,有限则求最大长度及对应数组

1<=n<=1500;1<=m<=5000,答案数组长度不超过2e6

思路:因为有且只有1个1,所以我们从1入手,如果有(a,1)这样的数对,那么在这个最长的数组中,a的数量就是2个,1的左边右边各一个,如果还有(b,a)这样的数对,那么b就有3个,a的两边各一个,中间1个,同理我们可以发现,如果还有(c,b),那c就有4个,按照这样的规律,我们对于每个形如(a,b)的数对,从b向a建有向边,每个数字在答案数组中的数量就是这个数到1的最短路长度,然后我们发现如果一个点b没有到1的通路,那么在每两个a之间都可以有无数个b,这样的数组就是infinite的,然后我们按照层数从大到小想象成一个如下图的金字塔,我们的答案数组就是第一次输出第一层,第二次第二层+第一层。。。最后输出整个金字塔,每次输出都是从上到下

//#include<__msvc_all_public_headers.hpp>
#include<bits/stdc++.h>
using namespace std;
const int N = 1505;
int d[N];
bool vis[N];
vector<int>g[N];
map<int, vector<int>>ma;
int main()
{
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(false);
	int t;
	cin >> t;
	while (t--)
	{
		int n, m;
		cin >> n >> m;
		ma.clear();
		for (int i = 1; i <= n; i++)
		{//初始化
			vis[i] = 0;
			d[i] = 0;
			g[i].clear();
		}
		for (int i = 1; i <= m; i++)
		{//从b到a建单向边
			int u, v;
			cin >> u >> v;			
			g[v].push_back(u);
		}
		d[1] = 1;定义1的深度为1
		vis[1] = 1;
		queue<int>q;
		q.push(1);
		while (!q.empty())
		{//bfs确定每个数的深度
			int u = q.front();
			ma[d[u]].push_back(u);//记录每个深度都有哪些数字
			q.pop();
			for (int i = 0; i < g[u].size(); i++)
			{
				int v = g[u][i];
				if (vis[v])
					continue;
				d[v] = d[u] + 1;
				vis[v] = 1;
				q.push(v);
			}
		}
		bool flag = 0;
		int mad = 0;
		int len = 0;
		for (int i = 1; i <= n; i++)
		{
			len += d[i];//总长度就是所有点的深度和
			mad = max(mad, d[i]);//记录最大深度
			if (!d[i])
			{//从1bfs没遍历到就是没有通路
				flag = 1;
			}
		}
		if (flag)
		{
			cout << "INFINITE" << endl;
			continue;
		}
		cout << "FINITE" << endl;
		cout << len << endl;
		for (int len = 1; len<=mad; len++)
		{//输出几次
			for (int i = mad - len + 1; i <= mad; i++)
			{//输出几层
				for (int j = 0; j < ma[i].size(); j++)
				{//输出1层的每个数
					cout << ma[i][j] << " ";
				}
			}
		}
		cout << endl;
	}
	return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

timidcatt

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值