题目大意:给出一个数n和m个形如(a,b)的数对,要求按以下规则构造一个数组:
规则1:所有数都在1到n之间
规则2:有且只有1个1
规则3:对于所有数对(a,b)在数组中每两个等于a的数中间至少有一个b
规则4:在满足以上规则的情况下求最长的数组
判断符合所有要求的数组长度是否是有限的,有限则求最大长度及对应数组
1<=n<=1500;1<=m<=5000,答案数组长度不超过2e6
思路:因为有且只有1个1,所以我们从1入手,如果有(a,1)这样的数对,那么在这个最长的数组中,a的数量就是2个,1的左边右边各一个,如果还有(b,a)这样的数对,那么b就有3个,a的两边各一个,中间1个,同理我们可以发现,如果还有(c,b),那c就有4个,按照这样的规律,我们对于每个形如(a,b)的数对,从b向a建有向边,每个数字在答案数组中的数量就是这个数到1的最短路长度,然后我们发现如果一个点b没有到1的通路,那么在每两个a之间都可以有无数个b,这样的数组就是infinite的,然后我们按照层数从大到小想象成一个如下图的金字塔,我们的答案数组就是第一次输出第一层,第二次第二层+第一层。。。最后输出整个金字塔,每次输出都是从上到下
//#include<__msvc_all_public_headers.hpp>
#include<bits/stdc++.h>
using namespace std;
const int N = 1505;
int d[N];
bool vis[N];
vector<int>g[N];
map<int, vector<int>>ma;
int main()
{
cin.tie(0);
cout.tie(0);
ios::sync_with_stdio(false);
int t;
cin >> t;
while (t--)
{
int n, m;
cin >> n >> m;
ma.clear();
for (int i = 1; i <= n; i++)
{//初始化
vis[i] = 0;
d[i] = 0;
g[i].clear();
}
for (int i = 1; i <= m; i++)
{//从b到a建单向边
int u, v;
cin >> u >> v;
g[v].push_back(u);
}
d[1] = 1;定义1的深度为1
vis[1] = 1;
queue<int>q;
q.push(1);
while (!q.empty())
{//bfs确定每个数的深度
int u = q.front();
ma[d[u]].push_back(u);//记录每个深度都有哪些数字
q.pop();
for (int i = 0; i < g[u].size(); i++)
{
int v = g[u][i];
if (vis[v])
continue;
d[v] = d[u] + 1;
vis[v] = 1;
q.push(v);
}
}
bool flag = 0;
int mad = 0;
int len = 0;
for (int i = 1; i <= n; i++)
{
len += d[i];//总长度就是所有点的深度和
mad = max(mad, d[i]);//记录最大深度
if (!d[i])
{//从1bfs没遍历到就是没有通路
flag = 1;
}
}
if (flag)
{
cout << "INFINITE" << endl;
continue;
}
cout << "FINITE" << endl;
cout << len << endl;
for (int len = 1; len<=mad; len++)
{//输出几次
for (int i = mad - len + 1; i <= mad; i++)
{//输出几层
for (int j = 0; j < ma[i].size(); j++)
{//输出1层的每个数
cout << ma[i][j] << " ";
}
}
}
cout << endl;
}
return 0;
}