题目大意:有一棵n个点的树,每个点的费用为ai,每个点可以覆盖到它本身和其相邻点,要求覆盖所有点,求最小花费
1<=n<=1e5;1<=ai<=1e5
思路:设dp[u][0]表示选择当前点,dp[u][1]表示不选当前点,也不选相邻子节点,dp[u][2]表示不选当前点,但相邻子节点中至少选1个,dp[u][0]+=min(dp[v][0],dp[v][1],dp[v][2]),因为当前点选了,那子节点选不选都无所谓,dp[u][1]+=dp[v][2],因为当前点和相邻子节点都不选,那相邻子节点的相邻子节点一定至少有一个选了,否则不合题意,dp[u][2]=min(dp[u][1]+dp[v][0],dp[u][2]+min(dp[v][0],dp[v][2])),dp[u][2]初始化为极大值,方程前半部分从当前和相邻子节点都不选转移,确保至少有一个子节点被选,后半部分正常的从子节点选不选转移,因为u没选,所以不能从dp[v][1]转移
#include<__msvc_all_public_headers.hpp>
//#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + 5;
typedef long long ll;
ll a[N];
vector<int>g[N];
ll dp[N][3];
void dfs(int u, int fa)
{
dp[u][0] = a[u];
dp[u][1] = 0;
dp[u][2] = 10000000000;//初始化为极大值,确保先考虑子节点选一个的情况
for (int i = 0; i < g[u].size(); i++)
{
int v = g[u][i];
if (v == fa)
continue;
dfs(v,u);
dp[u][2] = min(dp[u][1]+dp[v][0], dp[u][2]+min(dp[v][0],dp[v][2]));//先更新[u][2]
dp[u][0] += min(dp[v][0], min(dp[v][1],dp[v][2]));
dp[u][1] += dp[v][2];//再更新[u][1]
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
//FILE* stream1;
//freopen_s(&stream1,"1002.txt", "r", stdin);
int t;
cin >> t;
while (t--)
{
int n;
cin >> n;
for (int i = 1; i <= n; i++)
{
g[i].clear();
cin >> a[i];
}
for (int i = 1; i <= n - 1; i++)
{
int u, v;
cin >> u >> v;
g[u].push_back(v);
g[v].push_back(u);
}
dfs(1,0);
ll ans = min(dp[1][0],dp[1][2]);//根节点只能选或者不选且相邻子节点有选的
cout<< ans << endl;
}
return 0;
}