决策树算法熵与信息增益(Python3实现)

目录

1、熵、条件熵与信息增益

(1)熵(entropy)

(2)条件熵(conditional entropy)

(3)信息增益(information gain)

2、信息增益算法实现流程

3、数据集以及每个特征信息增益的计算

4、Python3实现熵与信息增益选择最优特征

(1)代码实现

(2)运行结果

5、补充知识

(1)信息增益比(增益率)

(2)基尼指数


1、熵、条件熵与信息增益

(1)熵(entropy)

(2)条件熵(conditional entropy)

(3)信息增益(information gain)

2、信息增益算法实现流程

3、数据集以及每个特征信息增益的计算

3.1贷款申请样本数据表

                                                                    表5.1 贷款申请样本数据表

1

青年

一般

2

青年

3

青年

4

青年

一般

5

青年

一般

6

中年

一般

7

中年

8

中年

9

中年

非常好

10

中年

非常好

11

老年

非常好

12

老年

13

老年

14

老年

非常好

15

老年

一般

3.2根据信息增益准则选择最优特征

4、Python3实现熵与信息增益选择最优特征

  在编写代码之前,我们先对数据集进行属性标注。

  • 年龄:0代表青年,1代表中年,2代表老年;
  • 有工作:0代表否,1代表是;
  • 有自己的房子:0代表否,1代表是;
  • 信贷情况:0代表一般,1代表好,2代表非常好;
  • 类别(是否给贷款):no代表否,yes代表是。

(1)代码实现

# -*- coding: UTF-8 -*-
from math import log


"""
函数说明:创建测试数据集
"""
def createDataSet():
    dataSet = [[0, 0, 0, 0, 'no'],         #数据集
               [0, 0, 0, 1, 'no'],
               [0, 1, 0, 1, 'yes'],
               [0, 1, 1, 0, 'yes'],
               [0, 0, 0, 0, 'no'],
               [1, 0, 0, 0, 'no'],
               [1, 0, 0, 1, 'no'],
               [1, 1, 1, 1, 'yes'],
               [1, 0, 1, 2, 'yes'],
               [1, 0, 1, 2, 'yes'],
               [2, 0, 1, 2, 'yes'],
               [2, 0, 1, 1, 'yes'],
               [2, 1, 0, 1, 'yes'],
               [2, 1, 0, 2, 'yes'],
               [2, 0, 0, 0, 'no']]
    labels = ['年龄', '有工作', '有自己的房子', '信贷情况']        #分类属性
    return dataSet, labels                           #返回数据集和分类属性


"""
函数说明:计算给定数据集的经验熵(香农熵)
Parameters:
    dataSet - 数据集
Returns:
    shannonEnt - 经验熵(香农熵)
"""
def calcShannonEnt(dataSet):
    numEntires = len(dataSet)                        #返回数据集的行数
    labelCounts = {}                                 #保存每个标签(Label)出现次数的字典
    for featVec in dataSet:                          #对每组特征向量进行统计
        currentLabel = featVec[-1]                   #提取标签(Label)信息
        if currentLabel not in labelCounts.keys():   #如果标签(Label)没有放入统计次数的字典,添加进去
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1               #Label计数
    shannonEnt = 0.0                                 #经验熵(香农熵)
    for key in labelCounts:                          #计算香农熵
        prob = float(labelCounts[key]) / numEntires  #选择该标签(Label)的概率
        shannonEnt -= prob * log(prob, 2)            #利用公式计算
    return shannonEnt                                #返回经验熵(香农熵)


"""
函数说明:按照给定特征划分数据集

Parameters:
    dataSet - 待划分的数据集
    axis - 划分数据集的特征
    value - 需要返回的特征的值
"""
def splitDataSet(dataSet, axis, value):
    retDataSet = []                                     #创建返回的数据集列表
    for featVec in dataSet:                             #遍历数据集
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]             #去掉axis特征
            reducedFeatVec.extend(featVec[axis+1:])     #将符合条件的添加到返回的数据集
            retDataSet.append(reducedFeatVec)
    return retDataSet                                   #返回划分后的数据集


"""
函数说明:选择最优特征
Parameters:
    dataSet - 数据集
Returns:
    bestFeature - 信息增益最大的(最优)特征的索引值
"""
def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1                     #特征数量
    baseEntropy = calcShannonEnt(dataSet)                 #计算数据集的香农熵
    bestInfoGain = 0.0                                    #信息增益
    bestFeature = -1                                      #最优特征的索引值
    for i in range(numFeatures):                          #遍历所有特征
        #获取dataSet的第i个所有特征
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList)                         #创建set集合{},元素不可重复
        newEntropy = 0.0                                   #经验条件熵
        for value in uniqueVals:                           #计算信息增益
            subDataSet = splitDataSet(dataSet, i, value)           #subDataSet划分后的子集
            prob = len(subDataSet) / float(len(dataSet))           #计算子集的概率
            newEntropy += prob * calcShannonEnt(subDataSet)        #根据公式计算经验条件熵
        infoGain = baseEntropy - newEntropy                        #信息增益
        print("第%d个特征的增益为%.3f" % (i, infoGain))             #打印每个特征的信息增益
        if (infoGain > bestInfoGain):                              #计算信息增益
            bestInfoGain = infoGain                                #更新信息增益,找到最大的信息增益
            bestFeature = i                                        #记录信息增益最大的特征的索引值
    return bestFeature                                             #返回信息增益最大的特征的索引值


if __name__ == '__main__':
    dataSet, features = createDataSet()
    entropy=calcShannonEnt(dataSet)
    bestfeature=chooseBestFeatureToSplit(dataSet)
    print("训练集的熵为:%f"%(entropy))
    print("最优特征索引值:" + str(bestfeature))

(2)运行结果

5、补充知识

(1)信息增益比(增益率)

(2)基尼指数

 机器学习基础学习目录

1、机器学习入门总结

2、机器学习分类算法常用评价指标总结

3、决策树算法ID3算法

4、决策树算法熵与信息增益

5、K-近邻法(KNN算法)

6、机器学习中的特征工程

7、逻辑回归算法处理简单数据

8、SVM算法实现手写数字识别

机器学习项目实战

1、项目实战-KNN算法实现手写数字识别

2、项目实战-KNN算法改进约会网站的配对效果

3、项目实战-朴素贝叶斯算法实现垃圾邮件过滤

4、项目实战-朴素贝叶斯算法实现新闻分类

本人博文NLP学习内容目录:

一、NLP基础学习

1、NLP学习路线总结

2、TF-IDF算法介绍及实现

3、NLTK使用方法总结

4、英文自然语言预处理方法总结及实现

5、中文自然语言预处理方法总结及实现

6、NLP常见语言模型总结

7、NLP数据增强方法总结及实现

8、TextRank算法介绍及实现

9、NLP关键词提取方法总结及实现

10、NLP词向量和句向量方法总结及实现

11、NLP句子相似性方法总结及实现

12、NLP中文句法分析

二、NLP项目实战

1、项目实战-英文文本分类-电影评论情感判别

2、项目实战-中文文本分类-商品评论情感判别

3、项目实战-XGBoost与LightGBM文本分类

4、项目实战-TextCNN文本分类实战

5、项目实战-Bert文本分类实战

6、项目实战-NLP中文句子类型判别和分类实战

交流学习资料共享欢迎入群:955817470(群一),801295159(群二)

  • 22
    点赞
  • 176
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论
好的,下面是用 Python 实现 ID3 决策树算法的代码示例: ```python import math from collections import Counter def find_entropy(data): """ 计算数据集的信息熵 """ # 统计数据集中每个类别的样本数 class_counts = Counter(data["label"]) # 计算每个类别样本数占总数的比例 class_probs = [class_count / len(data["label"]) for class_count in class_counts.values()] # 计算信息熵 entropy = sum([-class_prob * math.log(class_prob, 2) for class_prob in class_probs]) return entropy def find_best_split(data, features): """ 找到最佳分裂特征特征值 """ # 计算数据集的信息熵 entropy = find_entropy(data) # 初始化最佳分裂特征特征值 best_feature, best_value = None, None # 初始化最小信息增益 min_info_gain = float("inf") # 遍历每个特征 for feature in features: # 找到该特征的所有取值 values = set(data[feature]) # 遍历每个取值 for value in values: # 将数据集分成两部分 left_data = data[data[feature] == value] right_data = data[data[feature] != value] # 如果分裂后的数据集不为空 if len(left_data) > 0 and len(right_data) > 0: # 计算分裂后的信息熵 left_entropy = find_entropy(left_data) right_entropy = find_entropy(right_data) split_entropy = (len(left_data) / len(data)) * left_entropy + (len(right_data) / len(data)) * right_entropy # 计算信息增益 info_gain = entropy - split_entropy # 如果信息增益更大,则更新最佳分裂特征特征值 if info_gain < min_info_gain: best_feature, best_value = feature, value min_info_gain = info_gain # 返回最佳分裂特征特征值 return best_feature, best_value def build_tree(data, features): """ 构建决策树 """ # 如果数据集为空,则返回 None if len(data) == 0: return None # 如果数据集中所有样本都属于同一类别,则返回该类别 if len(set(data["label"])) == 1: return data["label"].iloc[0] # 如果没有可用特征,则返回数据集中样本数最多的类别 if len(features) == 0: return Counter(data["label"]).most_common(1)[0][0] # 找到最佳分裂特征特征值 best_feature, best_value = find_best_split(data, features) # 如果信息增益小于等于 0,则返回数据集中样本数最多的类别 if best_feature is None or best_value is None: return Counter(data["label"]).most_common(1)[0][0] # 创建节点 node = {"feature": best_feature, "value": best_value, "left": None, "right": None} # 将数据集分成两部分 left_data = data[data[best_feature] == best_value] right_data = data[data[best_feature] != best_value] # 递归构建左子树和右子树 node["left"] = build_tree(left_data, [feature for feature in features if feature != best_feature]) node["right"] = build_tree(right_data, [feature for feature in features if feature != best_feature]) # 返回节点 return node ``` 该代码实现ID3 决策树算法,其中 `find_entropy` 函数用于计算数据集的信息熵,`find_best_split` 函数用于找到最佳分裂特征特征值,`build_tree` 函数用于构建决策树
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Asia-Lee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值