- 博客(10)
- 收藏
- 关注
原创 Python数据分析实战之美食数据分析与可视化
本文介绍了如何使用Python进行数据分析,主要涉及数据导入、清洗、分析和可视化。首先,导入了Pandas、NumPy、Matplotlib和Seaborn等库,并设置了中文字体和负号显示。接着,读取了三个CSV文件(食物、评论和收藏数据),并进行了数据清洗,包括处理缺失值、重复值和数据类型转换。在数据分析部分,对食物类别、难度系数、用户评论和收藏行为进行了统计和可视化,包括柱状图、饼图、词云和情感分析等。最后,根据用户的评论和收藏行为将用户分类,并通过散点图展示用户类型。整个过程展示了从数据导入到分析结果
2025-05-18 22:28:25
311
原创 MySQL学习笔记一
mysql> select ename,sal*12 as '年薪' from emp;//别名是中文,用单引号括起来。//字符串使用单引号。// sal在前,起主导,只有sal相等的时候,才会考虑启用ename排序。
2025-04-25 12:45:32
362
原创 MySQL作业习题二
14、若系统中存在5个等待事务T0,T1,T2,T3,T4,其中T0正等待被T1锁住的数据项A1,T1正等待被T2锁住的数据项A2,T2正等待被T3锁住的数据项A3,T3正等待被T4锁住的数据项A4,T4正等待被T0锁住的数据项A0,则系统处于( )的工作状态。R(教师号,姓名,职称,团体名称,团体简介,团体负责人,参加日期,担当职务)。(1)基本FD有:教师号->姓名,教师号->职称,(教师号,团体名称)->担当职务,(教师号,团体名称)->参加日期,团体名称->团体简介,团体名称->团体负责人。
2025-04-25 12:42:28
369
原创 MySQL作业习题一
a.ename '员工', a.hiredate, b.ename '领导', b.hiredate, d.dname。21、列出在部门"SALES"< 销售部> 工作的员工的姓名, 假定不知道销售部的部门编号.e.ename '员工',d.dname,l.ename '领导',s.grade。22、列出薪金高于公司平均薪金的所有员工, 所在部门, 上级领导, 雇员的工资等级.25、列出薪金高于在部门 30 工作的所有员工的薪金的员工姓名和薪金. 部门名称。
2025-04-25 12:38:40
503
原创 计算机网络知识点总结
针对超时重传时间无法更新问题,进行算法修正:报文段每重传一次,就把超时重传时 间RTO增大一些,典型的做法是取新的重传时间为旧的重传时间的2倍。通常使用的方法是通过中心化的服务器或者分布式的 DHT(分布式哈希表)来维护节点的信息,并且节点可以通过查询这些服务器或DHT找到其他节点。 如果使用选择确认,那么原来首部中的“确认号字段”用法不变,只是以后在 TCP 报文段的首部中都增加了 SACK 选项,以便报告收到的不连续的字节块的边界。光源要使用昂贵的半导体激光器,不能使用较便宜的发光二极管。
2025-04-24 19:44:26
667
原创 大数据技术原理及应用—题库
答案: HDFS(分布式文件系统)、HBASE(实时读写分布式列式数据库)、MapReduce(分布式数据处理、计算)、Hive(数据仓库)、Pig(数据流和运行环境)、Mahout(数据挖掘)、ZooKeeper(协同工作系统)、Flume(数据采集、聚合和传输系统)、Sqoop(Hadoop和关系数据库之间交换数据)关系型数据库:表之间的连接等)、存储模式(列式、行式存储)、数据索引(只有一个行键索引)、数据维护(就只数据覆盖与否)、可伸缩性(横向扩展),把任务机交给任务调度器;
2025-04-23 22:05:00
1159
1
原创 Python数据分析实战之基于LSTM模型的阿里巴巴股票数据分析及预测
研究首先对阿里巴巴股票数据进行了趋势分析、波动性分析和交易量分析,以识别股票价格的长期趋势和短期波动。接着,构建了线性回归模型进行股票价格预测,并通过数据标准化和特征提取,提高了模型的预测准确性。此外,本研究还引入了LSTM模型,利用其记忆单元和门机制,捕捉股票价格的长期依赖关系,进一步提升了预测的准确性。
2025-04-04 12:57:13
799
原创 时间序列分析(R语言实战)之基于月度宏观经济信息数据的时间序列分析
本文通过一系列的时间序列分析方法,对多元宏观经济变量进行了深入研究。通过模型建立和预测,揭示了宏观经济变量之间的相互关系和规律。这对于理解经济现象、制定政策具有重要参考价值。但需要指出,时间序列分析依赖于历史数据,对于异常值和结构变化较为敏感,因此预测结果具有一定的不确定性。未来的研究可以进一步拓展数据范围和模型种类,以提高预测精度和适用性。
2025-03-21 21:48:17
356
原创 Python数据分析实战之基于RFM模型的电子产品销售数据分析
本研究旨在通过RFM模型对电子产品销售数据进行深入分析,以揭示销售模式、客户行为和市场趋势。研究采用数据分析技术,结合Python编程语言、Jupyter Notebook、Power BI等工具,对某电子产品店铺2010年的销售数据进行了全面的清洗、分析和可视化。
2025-03-13 22:00:36
381
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人