semi-suppervised learning 半监督学习


半监督学习使用大量的未标记数据,以及同时使用标记数据,来进行模式识别工作

Supervised learning:

  • 有样本标记学习

Semi-supervised learning:

  • A set of unlabeled data, usually U >> R , 未知label的data数大于已知label的样本
  • Transductive learning: unlabeled data is the testing data
  • Inductive learning: unlabeled data is not the testing data

Why semi-supervised learning?

  • Collecting data is easy, but collecting “labelled” data is
    expensive
  • We do semi-supervised learning in our lives

semi-suppervised learning 常常伴随一些假设
假设有没有用, 取决于假设是不是合理的。

概要
在这里插入图片描述

1. Semi-supervised Learning for Generative Model

在这里插入图片描述监督式生成模型用模拟高斯分布计算mean和方差,使likelihood最大在这里插入图片描述 绿色的点是unlabel data,会影响对参数的估测, boundary 不同
在这里插入图片描述原来P(C1) = N1/N. 现在有unlabel data, 加上所有unlabel data 属于c1 几率的和, μ 1 ,μ 2 , Σ 也如此考虑unlabel data计算,然后更新数据, 带入到step1, 继续计算和收敛。初始值会影响到收敛结果。在这里插入图片描述所有training data 的 likelihood加起来。 有unlable data 的情况下, 加上unlabel data的出现几率。每次循环会让 logL()增加一点, 最后收敛。

Likelihood of a Gaussian with mean μ and covariance matrix Σ
= the probability of the Gaussian samples x 1 , x 2 , x 3 , … ,x 79

EM最大期望算法(Expectation-maximization algorithm,又译为期望最大化算法),是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐性变量。

最大期望算法经过两个步骤交替进行计算,

第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;
第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值。M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行。

这里的EM算法, 可以参考下面链接,
这个抛硬币的例子

详细介绍和推导

2. Semi-supervised Learning Low-density Separation 低密度分离,非黑即白

在这里插入图片描述在这里插入图片描述
用已知的label data 去train model。 计算出unlabel的 label。从unlabel data里面放一部分到label data里面 在去train regression 不能用这招。soft label不起作用, 在low density的假设里面用hard label
在这里插入图片描述在这里插入图片描述
希望mode 的unlabel data entropy 越小越好,确定L, 然后算微分,gradient descent minimize L。SVM 穷举所有unlabel data, 对每个可能结果做svm, 然后选择boundary 使得margin最大, error最小

3. 平滑假设 Semi-supervised Learning Smoothness Assumption 近朱者赤,近墨者黑

近朱者赤,近墨者黑
“You are known by the company you keep”

在这里插入图片描述假设。 x分布有些地方密集,当x1,x2, 在分布密集区域很接近, 可以认为他们same。在这里插入图片描述手写数字辨识,2,3 有点像, 如果看更多的data,2~2之间有很多过度形态。

方法 cluster , graph-based approach

在这里插入图片描述把所有数据做cluster,分cluster。这个方法不一定有用,cluster要很强。在这里插入图片描述把所有datapoint 做成graph,两个点相连就是graph
在这里插入图片描述graph 很多种, 最近,相似度大于某个值, 可以用RBF 计算相似度,RBF 下降快,每比data会影响他的邻居,传播同一个class在这里插入图片描述计算smoothness, 判断graph平滑度, s越小与好。 例子里面,weight有一样, label不同。计算s左边更滑
在这里插入图片描述计算s方程简化, 忽略证明过程。y展开成vector, 包括label 和 unlabel的 data在这里插入图片描述 Loss 计算, minimize Cross 和 smoothness ,用gradient descent。算smoothness 可以放在network 任何地方

4. Semi-supervised Learning Better Representation 去蕪存菁,化繁為簡

詳細部分放在 unsupervised learning

• Find the latent factors behind the observation
• The latent factors (usually simpler) are better representations

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值