Dirichlet distribution 狄利克雷分布

一些函数

  • G a m m a Gamma Gamma 函数
    Γ ( x ) = ∫ 0 ∞ t x − 1 e − t d t \Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t Γ(x)=0tx1etdt
  • 贝叶斯概率
    π ( θ ∣ x ) = f ( x ∣ θ ) π ( θ ) ∫ Θ f ( x ∣ θ ) π ( θ ) d θ \pi(\theta \mid x)=\frac{f(x \mid \theta) \pi(\theta)}{\int_{\Theta} f(x \mid \theta) \pi(\theta) d \theta} π(θx)=Θf(xθ)π(θ)dθf(xθ)π(θ)
  • B e t a Beta Beta 函数
    B ( m , n ) = ∫ 0 1 x m − 1 ( 1 − x ) n − 1 d x \mathrm{B}(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x B(m,n)=01xm1(1x)n1dx
  • B e t a Beta Beta 函数和 G a m m a Gamma Gamma 函数的关系
    B ( m , n ) = Γ ( n ) Γ ( m ) Γ ( m + n ) \mathrm{B}(m, n)=\frac{\Gamma(n) \Gamma(m)}{\Gamma(m+n)} B(m,n)=Γ(m+n)Γ(n)Γ(m)

换元 x = cos ⁡ 2 θ x=\cos ^{2} \theta x=cos2θ
B ( m , n ) = − 2 ∫ π 2 0 ( sin ⁡ 2 n − 2 θ ) ( cos ⁡ 2 m − 2 θ ) ( sin ⁡ θ ) ( cos ⁡ θ ) d x = 2 ∫ 0 π 2 ( sin ⁡ 2 n − 1 θ ) ( cos ⁡ 2 m − 1 θ ) d θ  (a)  \mathrm{B}(m,n) = -2 \int_{\frac{\pi}{2}}^{0}\left(\sin ^{2 n-2} \theta\right)\left(\cos ^{2 m-2} \theta\right)(\sin \theta)(\cos \theta) d x=2 \int_{0}^{\frac{\pi}{2}}\left(\sin ^{2 n-1} \theta\right)\left(\cos ^{2 m-1} \theta\right) d \theta \text { (a) } B(m,n)=22π0(sin2n2θ)(cos2m2θ)(sinθ)(cosθ)dx=202π(sin2n1θ)(cos2m1θ)dθ (a) 考虑Gamma函数 Γ ( n ) = ∫ 0 + ∞ e − x x n − 1 d x \Gamma(n)=\int_{0}^{+\infty} e^{-x} x^{n-1} d x Γ(n)=0+exxn1dx ,换元 x = y 2 x=y^{2} x=y2,得 Γ ( n ) = 2 ∫ 0 + ∞ e − y 2 y 2 n − 1 d y \Gamma(n)=2 \int_{0}^{+\infty} e^{-y^{2}} y^{2 n-1} d y Γ(n)=20+ey2y2n1dy
同样, Γ ( m ) = 2 ∫ 0 + ∞ e − z 2 y 2 z − 1 d y \Gamma(m)=2 \int_{0}^{+\infty} e^{-z^{2}} y^{2 z-1} d y Γ(m)=20+ez2y2z1dy
那么, Γ ( n ) Γ ( m ) = 4 ∫ 0 + ∞ ∫ 0 + ∞ e − y 2 − z 2 y 2 n − 1 z 2 m − 1 d y d z \Gamma(n) \Gamma(m)=4 \int_{0}^{+\infty} \int_{0}^{+\infty} e^{-y^{2}-z^{2}} y^{2 n-1} z^{2 m-1} dy dz Γ(n)Γ(m)=40+0+ey2z2y2n1z2m1dydz
y = x cos ⁡ θ , z = x sin ⁡ θ y=x \cos \theta, z=x \sin \theta y=xcosθ,z=xsinθ
Γ ( n ) Γ ( m ) = ∫ 0 π 2 ∫ 0 + ∞ e − x 2 x 2 m + 2 n − 1 ( sin ⁡ 2 n − 1 θ ) ( cos ⁡ 2 m − 1 θ ) d x d θ = [ 2 ∫ 0 + ∞ e − x 2 x 2 m + 2 n − 1 d x ] [ 2 ∫ 0 π 2 ( sin ⁡ 2 n − 1 θ ) ( cos ⁡ 2 m − 1 θ ) d θ ] = Γ ( m + n ) B ( m , n ) \begin{aligned}\Gamma(n) \Gamma(m)&=\int_{0}^{\frac{\pi}{2}} \int_{0}^{+\infty} e^{-x^{2}} x^{2 m+2 n-1}\left(\sin ^{2 n-1} \theta\right)\left(\cos ^{2 m-1} \theta\right) d x d \theta=\left[2 \int_{0}^{+\infty} e^{-x^{2}} x^{2 m+2 n-1} d x\right]\left[2 \int_{0}^{\frac{\pi}{2}}\left(\sin ^{2 n-1} \theta\right)\left(\cos ^{2 m-1} \theta\right) d \theta\right]\\&=\Gamma(m+n)\mathrm{B}(m,n)\end{aligned} Γ(n)Γ(m)=02π0+ex2x2m+2n1(sin2n1θ)(cos2m1θ)dxdθ=[20+ex2x2m+2n1dx][202π(sin2n1θ)(cos2m1θ)dθ]=Γ(m+n)B(m,n)

二项分布

二项分布 = 伯努利分布,
记为 X ∼ b ( n , θ ) X\sim b(n,\theta) Xb(n,θ) n n n 次抛硬币中获得 k k k 次正面的概率为:
b ( k , n , θ ) = P ( X = k ) = C ( n , k ) × θ k × ( 1 − θ ) n − k b(k,n,\theta) = P(X=k) = C(n,k) \times \theta^k \times (1-\theta)^{n-k} b(k,n,θ)=P(X=k)=C(n,k)×θk×(1θ)nk

Beta分布

是指一组定义在 ( 0 , 1 ) (0,1) (0,1)区间的连续概率分布,有两个参数 α , β > 0 \alpha , \beta > 0 α,β>0,称为形状参数。Beta分布定义了二项分布的参数 θ \theta θ 的分布,或者说 先验分布
B e t a ( θ ; α , β ) = θ α − 1 ( 1 − θ ) β − 1 B ( α , β ) = Γ ( α + β ) Γ ( α ) Γ ( β )   θ α − 1 ( 1 − θ ) β − 1 Beta(\theta; \alpha, \beta)=\frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{\mathrm{B}(\alpha, \beta)} = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\ \theta^{\alpha-1}(1-\theta)^{\beta-1} Beta(θ;α,β)=B(α,β)θα1(1θ)β1=Γ(α)Γ(β)Γ(α+β) θα1(1θ)β1

  • Beta分布与二项分布是 共轭先验 的(Conjugate prior)。即Beta分布乘上一个二项分布的似然函数后,得到的后验分布仍然是一个Beta分布。
    B e t a ( θ ; α 0 , β 0 ) × b ( h i t s , h i t s + m i s s e s , θ ) = B e t a ( θ ; α 0 + h i t s , β 0 + m i s s e s ) Beta(\theta; \alpha_0, \beta_0) \times b(hits, hits+misses,\theta) = Beta(\theta; α_0+hits,β_0+misses) Beta(θ;α0,β0)×b(hits,hits+misses,θ)=Beta(θ;α0+hits,β0+misses)

实例

多项式分布

记为 X ~ P N ( n , p 1 , p 2 , … , p k ) X~PN(n,p_1,p_2, …,p_k) XPN(n,p1,p2,,pk)
假设随机试验有 k k k 个可能的结果 A 1 , A 2 , . . . , A k A_1,A_2,..., A_k A1,A2,...,Ak,每个结果出现的次数为随机变量 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn,每个结果出现的概率为 p 1 , p 2 , . . . , p k p_1,p_2,...,p_k p1,p2,...,pk n n n 次独立重复试验中随机事件出现的次数分别为 n 1 , n 2 , . . . , n k n_1,n_2,...,n_k n1,n2,...,nk 的概率符合 多项式分布
P ( X 1 = n 1 , X 2 = n 2 , … , X k = n k ) = n ! n 1 ! n 2 ! … n k ! p 1 n 1 p 2 n 2 … p k n k P\left(X_{1}=n_{1}, X_{2}=n_{2}, \ldots, X_{k}=n_{k}\right)=\frac{n !}{n_{1} ! n_{2} ! \ldots n_{k} !} p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{k}^{n_{k}} P(X1=n1,X2=n2,,Xk=nk)=n1!n2!nk!n!p1n1p2n2pknk

Dirichlet 分布

D i r i c h l e t Dirichlet Dirichlet 分布是多项式分布的参数的分布,与多项分布是共轭先验的。即 D i r i c h l e t Dirichlet Dirichlet 分布乘上一个多项分布的似然函数后,得到的后验分布仍然是一个 D i r i c h l e t Dirichlet Dirichlet 分布。
D i r i c h l e t ( θ 1 , … , θ K ; α 1 , … , α K ) = 1   B ( α ) ∏ i = 1 K θ i α i − 1 = Γ ( ∑ i = 1 K α i ) ∏ i = 1 K Γ ( α i ) ∏ i = 1 K θ i α i − 1 Dirichlet\left(\theta_{1}, \ldots, \theta_{K} ; \alpha_{1}, \ldots, \alpha_{K}\right)=\frac{1}{\mathrm{~B}(\bm{\alpha})} \prod_{i=1}^{K} \theta_{i}^{\alpha_{i}-1} = \frac{\Gamma(\sum_{i=1}^{K}\alpha_i)}{\prod_{i=1}^{K} \Gamma(\alpha_i)}\prod_{i=1}^{K} \theta_{i}^{\alpha_{i}-1} Dirichlet(θ1,,θK;α1,,αK)= B(α)1i=1Kθiαi1=i=1KΓ(αi)Γ(i=1Kαi)i=1Kθiαi1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值