自适应滤波:LMS/NLMS


转自:http://www.cnblogs.com/xingshansi/p/6658203.html 

前言

西蒙.赫金的《自适应滤波器原理》第四版第五、六章:最小均方自适应滤波器(LMS,Least Mean Square)以及归一化最小均方自适应滤波器(NLMS,Normalized Least Mean Square)。全文包括:

  1)LMS与维纳滤波器(Wiener Filter)的区别;

  2)LMS原理及推导;

  3)NLMS推导;

  4)应用实例;

内容为自己的读书记录,其中错误之处,还请各位帮忙指出!

 

一、LMS与维纳滤波器(Wiener Filter)的区别

  • 这里介绍的LMS/NLMS,通常逐点处理,对应思路是:随机梯度下降;
  • 对于Wiener Filter,给定准则函数J,随机/批量梯度都可以得出最优解;
  • LMS虽然基于梯度下降,但准则仅仅是统计意义且通常引入误差,可以定义为 J0,简而言之 J通常不等于 J0,得出的最优解 wo自然也通常不等于维纳最优解;
  • 分析LMS通常会分析稳定性,稳定性是基于Wiener解,之前已给出分析。但LMS是Wiener解的近似,所以:迭代步长的稳定性,严格适用于Wiener解,对于LMS只是一种近似参考,并没有充分的理论依据

下文的分析仍然随机梯度下降的思路进行。

 

二、LMS原理及推导

LMS是时间换空间的应用,如果迭代步长过大,仍然有不收敛的问题;如果迭代步长过小,对于不平稳信号,还没有实现寻优就又引入了新的误差,屋漏偏逢连夜雨!所以LMS系统是脆弱的,信号尽量平稳、哪怕短时平稳也凑合呢。

给出框图:

关于随机梯度下降,可以参考之前的文章。这里直接给出定义式:

利用梯度下降:

−∇J=x(wTx−d)T

给出LMS算法步骤:

1)给定 w(0),且 1<μ<1/λmax

2)计算输出值: y(k)=w(k)Tx(k);

3)计算估计误差: e(k)=d(k)−y(k);

4)权重更新: w(k+1)=w(k)+μe(k)x(k)

 

三、NLMS推导

 看到Normalized,与之联系的通常是约束条件,看到约束不免想起拉格朗日乘子。思路有了,现在开始分析:

假设 w(k)⇒w(k+1)得到最优权重,即:

d(k)=w(k+1)x(k)

我们希望在得到期望权重的附近,迭代不要过大以免错过最优值:

写出准则函数:

利用之前文章提到的拉格朗日乘子法

这里仅仅分析基于欧式距离 p=2的情形,其它范数类似。求解得出:

通常为了防止分母为零迭代方程需要修正,而修正后步长存在偏差,故添加调节因子 μ

给出NLMS算法步骤:

1)给定 w(0)

2)计算输出值: y(k)=w(k)Tx(k);

3)计算估计误差: e(k)=d(k)−y(k);

4)权重更新: w(k+1)=w(k)+μα+|x(k)|2x(k)e∗(k)

 

四、应用实例

  A-自适应噪声滤波

这个场景可以简化为:一个房间两个麦克风,一个放在远处采集房间噪声,一个放在说话人附近采集带噪语音,认为两个音频文件的噪声相似。

这里噪声直接用白噪声,对应实际场景可以认为是采集的噪声数据,给出主要代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
[s, fs, bits] =  wavread (filename);         
s=s- mean (s);                          
s=s/ max ( abs (s));                      
N= length (s);                           
time=(0:N-1)/fs;                      
%%生成带噪信号
clean=s';
ref_noise=0.1* randn (1, length (s));
mixed = clean+ref_noise
%NLMS
mu=0.05;M=32;espon=1e-4;
% [en,wn,yn]=lmsFunc(mu,M,ref_noise,mixed);%
[en,wn,yn]=nlmsFunc(mu,M,ref_noise,mixed,espon);

LMS代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
function  [e,w,ee]=lmsFunc(mu,M,u,d)
% Normalized LMS
% Call:
% [e,w]=nlms(mu,M,u,d,a);
%
% Input arguments:
% mu = step size, dim 1x1
% M = filter length, dim 1x1
% u = input signal, dim Nx1
% d = desired signal, dim Nx1
% a = constant, dim 1x1
%
% Output arguments:
% e = estimation error, dim Nx1
% w = final filter coefficients, dim Mx1
%intial value 0
 
w= zeros (M,1);  %This is a vertical column
 
%input signal length
N= length (u);
%make sure that u and d are colon vectors
u=u(:);
d=d(:);
%NLMS
ee= zeros (1,N);
for  n=M:N  %Start at M (Filter Length) and Loop to N (Length of Sample)
     uvec=u(n:-1:n-M+1);  %Array, start at n, decrement to n-m+1
     e(n)=d(n)-w'*uvec;
     w=w+2*mu*uvec*e(n);
     % y(n) = w'*uvec; %In ALE, this will be the narrowband noise.
end

NLMS代码:

对应结果图:

可以看出LMS/NLMS在最开始都有一个自适应的过程。

NLMS基于信号 x的能量实现变步长,信号大步长小,信号小则步长大:目标信号明显,则迭代细致,不明显,则一带而过,呵呵,跟平时看书还挺像,聪明的孩子。

再来看一组信号:

这里在中间令噪声突变,可以看到滤波器又需要重新自适应,因此对于短时平稳LMS勉强使用,如果不断变呢?非平稳LMS自然无效了,这个时候就需要Kalman Filter来搭把手。

  B-工频噪声滤波

现在有一个音频信号,分析频谱:

可以看到信号带有明显的 50Hz噪声,我们知道 50Hz的正弦与余弦可以组合成任意相位的 50Hz频率信号,基于这个思路,进行自适应滤波:

给出主要的代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
x1= cos (2* pi *50*time);              
x2= sin (2* pi *50*time);
w1=0.1;                              
w2=0.1;
e= zeros (1, N);                        
y= zeros (1, N);
mu=0.05;                           
for  i =1: N                          
   y( i )=w1 * x1( i )+ w2 * x2( i );         
   e( i ) =x( i )-y( i );                     
   w1=w1+mu * e( i ) * x1( i );            
   w2=w2+mu * e( i ) * x2( i );
end

结果图可以看出,工频50Hz滤除:

基于LMS的应用还有很多,不一一说啦。

 

参考:


  • 1
    点赞
  • 70
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值