分析学方面,特别是微积分方面的教材特别多,这里推荐几本国内外非常著名的教材,以供大家参考,国外的教材写的比较生动详尽,将理论的来龙去脉交代得非常清楚;国内的教材则写的比较简洁,框架比较清晰。两者各有优劣,可以结合着读。
先介绍分析学方面的入门教材,具体见书籍 5。
书籍 5 分析学入门教材推荐:(a) 高等数学 (同济大学数学系); (b) 高等数学 (李忠 等): (c) Thomas’ Calculus (George B. Thomas Jr. 等); (d) Calculus (Ron Larson 等)
同济大学数学系编的《高等数学》[5]是国内高校普遍使用的一套教材。该书的特色是框架清晰,论述简洁,难度适中,比较适合课堂讲授。该书习题较少,建议学习该套教材时额外多做一些习题,以便更加深入地掌握微积分相关知识。
北京大学李忠等人写的《高等数学》[6]也是一套非常不错的教材,它的特点在于保持简洁性的同时,还把原理背后的数学思想和来龙去脉写得比较清楚,该书难度较大,适合提高用。
《Thomas’ Calculus》[7]是微积分教材中非常著名的一本,平均每4至5年该书就更新一个版本,每次更新的版本都有不少改进之处。与我国的高等数学教材相比,其基本内容和结构有着许多相似之处,但在题材选取和处理上又有更多不同特色,尤其是在突出应用和数学建模以及重视数值计算和程序应用方面。
Ron Larson等人写的《Calculus》[8]是一本广受学生欢迎的微积分教材。该书通俗易懂,非常适合自学。
如果需要进一步提升自己分析学的理论知识和技能,达到中阶水准,则可以进一步阅读下面的分析学方面的著名教材,更加全面深入地学习分析学的知识,具体见书籍 6。书籍 6中推荐的几套教材是按照难度递增顺序排列的,读者可以根据自己的实际情况选择适合自己的教材。一般来说,任意选一套进行认真阅读,所获得的分析学能力基本能够胜任后续AI学习的要求。
书籍 6 分析学提高教材推荐: (a) 数学分析 (华东师范大学数学科学学院); (b) 数学分析教程 (常庚哲 等); (c) Principles of Mathematical Analysis (Walter Rudin); (d) Mathematical Analysis (Vladimir A. Zorich)
华东师范大学数学科学学院编写的《数学分析》[9]比较通俗易懂,上手比较容易。
中国科学技术大学常庚哲和史济怀教授编著的《数学分析教程》[10]相对而言难度较大,可以结合网上相应的视频教程进行学习,教材上的习题较难,独立做一做习题对提高自己的数学分析技巧会大有帮助。
Walter Rudin写的《Principles of Mathematical Analysis》[11]是一本世界著名的数学分析教材,该书写作简洁优美且含有大量证明。如果数学基础较好,阅读此书会觉得赏心悦目。该书有对应的中文翻译版《数学分析原理》,由机械工业出版社出版。
Vladimir A. Zoric写的《Mathematical Analysis》[12]是一套非常著名的俄罗斯数学教材,该套教材风格非常独特,在古典分析学中创新性地加入了现代数学的元素,书中的数学推导环环相扣,非常引人入胜。教材的架构安排层次分明且构思精巧,书中安排了许多极具启发性的习题,通过做习题能够形成深刻的领悟。该套教材是莫斯科大学数学与力学系的教材,总体难度大,适合对自己数学能力有较高要求的读者进行阅读学习。
如果有志于AI基础理论研究,则对于分析学的能力有非常高的要求,最好能够掌握实分析、复分析、傅立叶分析、泛函分析这四种AI研究中必须用到的分析学技巧,可以阅读书籍 7推荐的四本教材[13][14][15][16]掌握上述四种分析学技巧。该套丛书由著名数学家Elias M. Stein等教授撰写,其特点是详实生动、易于阅读和自学,被美国很多知名大学用作数学分析课的教材。通过阅读和学习此套丛书,你将能够获得全面而扎实的分析学理论和技巧,为AI基础理论的研究构建坚固的分析学知识架构。
书籍 7 分析学进阶教材推荐 (作者Elias M. Stein 等); (a) Real Analysis: Measure Theory, Integration, and Hilbert Spaces; (b) Complex Analysis; (c) Fourier Analysis: An Introduction; (d) Functional Analysis: An Introduction to Further Topics in Analysis
关于人工智能中的分析学快速入门的更多介绍,可以购买《人工智能怎么学》进一步阅读。
图书购买方式
京东:https://item.jd.com/13395339.html
当当:http://product.dangdang.com/29469230.html
天猫:https://detail.tmall.com/item_o.htm?id=687374654836
为了让图书惠及更多的读者,为更多想学习人工智能的人提供帮助,经过向出版社申请,对图书《人工智能怎么学》的部分内容进行改编和连载。图书《人工智能怎么学》的全部内容包含了初级入门、中阶提高以及高级进阶三个级别的内容。连载的内容主要是初级入门级别,适合想对人工智能进行快速和高效入门的读者,对于已有一定的人工智能学习基础,希望进一步进阶或提高的读者,则需要购买图书《人工智能怎么学》,学习中阶提高以及高级进阶的内容。此外,对于学习人工智能感兴趣的读者,也可以加入知识星球《人工智能怎么学》,知识星球是一个构建学习社群的平台,通过加入《人工智能怎么学》的社群,你将获得更多的学习资料和课程信息。
与作者互动和了解更多信息
想跟作者一起学习人工智能和互动,你可以加入如下社群:
知识星球:https://t.zsxq.com/0aLkVg0os
微信群与QQ群:600587177
想了解更多关于人工智能学习及实践的内容,请关注如下媒体:
官方网站:https://bigdatamininglab.github.io
官方微信公众号:微信搜索“人工智能怎么学” 找到公众号后添加关注
CSDN:https://blog.csdn.net/audyxiao001
参考文献
张文俊. 数学欣赏[M]. 北京: 科学出版社, 2011.
李文林. 数学史概论 第4版[M]. 北京: 高等教育出版社, 2021.
方开泰. 漫漫修远攻算路:方开泰自述[M]. 长沙: 湖南教育出版社, 2016.
徐品方. 数学王子——高斯[M]. 哈尔滨: 哈尔滨工业大学出版社, 2018.
同济大学数学系. 高等数学(第7版)[M]. 北京: 高等教育出版社, 2014.
李忠,周建莹. 高等数学(第2版)[M]. 北京: 北京大学出版社, 2009.
Joel Hass et al.Thomas’ Calculus: Early Transcendentals (Fourteenth Edition)[M]. Pearson, 2018.
Ron Larson, and Bruce Edwards. Calculus (Eleventh Edition) [M].Cengage Learning, 2018.
华东师范大学数学科学学院. 数学分析(第5版)[M]. 北京: 高等教育出版社, 2019.
常庚哲, 史济怀. 数学分析教程(第3版)[M]. 合肥: 中国科学技术大学出版社, 2012.
Walter Rudin. Principles of Mathematical Analysis (ThirdEdition) [M]. McGraw-Hill Education, 1976.
Vladimir A. Zoric. Mathematical Analysis (Second Edition) [M].Springer, 2016.
Elias M. Stein, and RamiShakarchi. Real Analysis: Measure Theory, Integration, and Hilbert Spaces [M]. Princeton University Press,2004.
Elias M. Stein, and Rami Shakarchi. Complex Analysis [M]. Princeton University Press,2005.
Elias M. Stein, and Rami Shakarchi. Fourier Analysis: An Introduction[M]. PrincetonUniversity Press,2003.
Elias M. Stein, and Rami Shakarchi. Functional Analysis:Introduction to Further Topics in Analysis[M]. Princeton University Press, 2011.
丘维声. 简明线性代数[M]. 北京: 北京大学出版社, 2002.
居于马. 线性代数(第2版)[M]. 北京: 清华大学出版社, 2002.
李尚志. 线性代数[M]. 北京: 高等教育出版社, 2002.
李炯生. 线性代数(第2版)[M]. 合肥: 中国科学技术大学出版社, 2010.
龚昇. 线性代数(第2版)[M]. 合肥: 中国科学技术大学出版社, 2005.
任广千, 谢聪, 胡翠芳. 线性代数的几何意义[M]. 西安: 西安电子科技大学出版社, 2015.
Kuldeep Singh. Linear Algebra: Step by Step [M]. OxfordUniversity Press,2014.
Gilbert Strang. Introduction to Linear Algebra (Fifth Edition)[M]. Wellesley-Cambridge Press, 2016.
David C. Lay et al. Linear Algebra and Its Application (FifthEdition) [M]. Pearson,, 2016.
Sheldon Axler. Linear Algebra Done Right (Third Edition) [M].Springer, 2015.
Gerald Farin, and Dianne Hansford. Practical Linear Algebra:A Geometry Toobox (Third Edition) [M]. CRC Press, 2013.
Gilbert Strang. Linear Algebra and Learning from Data [M].Wellesley-Cambridge Press, 2019.
徐仲. 矩阵论简明教程(第3版)[M]. 北京: 科学出版社, 2014.
张贤达. 矩阵分析与应用(第2版)[M]. 北京: 清华大学出版社, 2013.
Gene H. Golub, and Charles F. Van Loan. Matrix Computation (FourthEdition) [M]. The Johns Hopkins University Press, 2013.
Roger A. Horn, and Charles R. Johnson. Matrix Analysis (SecondEdition) [M]. Cambridge University Press, 2013.
盛骤, 谢式千, 潘承毅. 概率论与数理统计(第4版)[M]. 北京: 高等教育出版社, 2008.
陈希孺. 概率论与数理统计[M]. 合肥: 中国科学技术大学出版社, 2017.
Jay L. Devore. Probability and Statistics for Engineering andthe Sciences (Ninth Edition) [M]. Cengage Learning, 2016.
Morris H. DeGroot, and Mark J. Schervish . Probabilityand Statistics (Forth Edition) [M]. Pearson, 2012.
高惠璇. 应用多元统计分析[M]. 北京大学出版社, 2004.
王静龙. 多元统计分析[M]. 科学出版社, 2008.
T. W. Anderson. An Introduction to Multivariate StatisticalAnalysis (Third Edition) [M]. John Wiley & Sons, 2003.
Richard A. Johnson, and Dean W. Wichern . Applied Multivariate Statistical Analysis (SixthEdition) [M]. Pearson, 2007.
程士宏. 测度论与概率论基础[M]. 北京: 北京大学出版社, 2004.
严加安. 测度论讲义(第2版)[M]. 北京: 科学出版社, 2004.
Krishna B. Athreya, and Soumendra N. Lahiri. Measure Theoryand Probability Theory (Third Edition) [M]. Springer, 2006.
Paul R. Halmos. Measure Theory [M]. Springer Science+Business Media, 1974.
胡迪鹤. 高等概率论及其应用[M]. 北京: 高等教育出版社, 2008.
郑忠国. 高等统计学[M]. 北京: 北京大学出版社, 2012.
Craig A. Mertler, and Rachel Vannatta Reinhart. Advanced andMultivariate Statistical Methods: Practical Application and Interpretation (SixthEdition) [M]. Routledge, 2017.
Eugene Demidenko. Advanced Statistics with Applications in R [M].John Wiley & Sons, 2020.
何书元. 随机过程[M]. 北京: 北京大学出版社, 2008.
张波, 张景肖. 应用随机过程[M]. 北京: 清华大学出版社, 2004.
Sheldon M. Ross. Introduction to Probability Models (TwelfthEdition) [M]. Academic Press, 2019.
Robert G. Gallager. Stochastic Processes: Theory forApplications [M]. John Wiley & Sons, 2013.
David Forsyth. Probability and Statistics for ComputerScience (Twelfth Edition) [M]. Springer, 2018.
Luc Devroye et al. A Probabilistic Theory of PatternRecognition [M]. Springer, 1997.
《运筹学》教材编写组. 运筹学(第4版)[M]. 北京: 清华大学出版社, 2013.
胡运权, 郭耀煌. 运筹学教程(第5版)[M]. 北京: 清华大学出版社, 2018.
Frederick S. Hillier, and Gerald J. Lieberman. Introductionto Operation Research (Tenth Edition) [M]. McGraw-Hill Education, 2015.
Hamdy A. Taha. Operation Research:An Introduction (TenthEdition) [M]. Pearson, 2017.
陈宝林. 最优化理论与算法(第2版)[M]. 北京: 清华大学出版社, 2018.
高立. 数值最优化方法[M]. 北京: 北京大学出版社, 2014.
Edwin K. P. Chong, and Stanislaw H. Zak. An Introduction toOptimization (Fourth Edition) [M]. John Wiley & Sons, 2013.
Jorge Nocedal, and Stephen J. Wright. Numerical Optimization(Second Edition) [M]. Springer, 2006.
Stephen Boyd, and Lieven Vandenberghe. Convex Optimization[M]. Cambridge University Press, 2004.
Yuni Nesterov. Lectures on Convex Optimization (SecondEdition) [M]. Springer, 2018.
李航. 统计学习方法(第2版)[M]. 北京: 清华大学出版社, 2019.
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
Yuni Nesterov. The Elements of Statistical Learning: DataMining, Inference, and Prediction (Second Edition) [M]. Springer, 2009.
Tom M. Mitchell. Machine Learning [M]. McGraw-Hill Education,1997.
Christopher Bishop. Pattern Recognition and Machine Learning[M]. Springer, 2006.
Mehryar Mohri et al. Foundation of Machine Learning (SecondEdition) [M]. The MIT Press, 2018.
Kevin P. Murphy. Probabilistic Machine Learning: AnIntroduction [M]. The MIT Press, 2022.
Shai Shalev-Shwartz, and Shai Ben-David. UnderstandingMachine Learning: From Theory to Algorithms [M]. Cambridge University Press,2014.
Ian Goodfellow et al.Deep Learning [M]. The MIT Press, 2016.
杨强, 张宇, 戴文渊, 潘嘉林 . 迁移学习[M]. 北京: 机械工业出版社, 2020.
杨强, 刘洋,程勇 等. 联邦学习[M]. 北京: 中国工信出版集团, 电子工业出版社, 2020.
周志华. 集成学习:基础与算法(第2版)[M]. 李楠, 译. 北京: 清华大学出版社, 2019.
Richard S. Sutton, and Andrew G. Barto. ReinforcementLearning: An Introduction [M]. The MIT Press, 2018.
Amparo Albalate, and Wolfgang Minker. Semi-Supervised andUnsupervised Machine Learning [M]. ISTE, and John Wiley & Sons, 2011.
Christoph Molnar. Interpretable Machine Learning: A Guide forMaking Black Box Models Expainable [M]. lulu.com, 2020.
Judea Pearl. Causality: Models, Reasoning, and Inference(Second Edition) [M]. Cambridge University Press, 2009.
注:本文版权归作者个人所有,如需转载请联系作者,未经授权不得转载。