人工智能中的概率论与统计学修炼秘籍之著名教材

概率论与统计学的学习者众多,为了迎合不同学习者的需求,各种教材种类繁多、眼花缭乱。为此,非常有必要推荐一些常用的教材给人工智能学习人员,提升学习的效率,提高学习的效果。根据学习逐渐深入的顺序,本文将按照“概率论与数理统计→多元统计分析→测度论→高等概率论与统计学→随机过程→概率论与统计学在人工智能中的应用”这一顺序逐一加以推荐。

1. 概率论与数理统计常用教材

概率论与数理统计推荐教材如书籍 11所示。

书籍 11 概率论与数理统计教材推荐: (a) 概率论与数理统计 (盛骤等); (b) 概率论与数理统计 (陈希孺); (c) Probability and Statistics for Engineering and the Sciences (Jay L. Devore); (d) Probability and Statistics (Morris H. DeGroot等)

浙江大学盛骤等人编写的《概率论与数理统计》[33]是国内大学使用最为广泛的教材之一。其风格是架构清晰,语言平实简练,适合作为教材。

中国科学院陈希孺院士编写的《概率论与数理统计》[34]是一本非常著名的教材。该教材在理论和应用两个方面取得了很好的平衡,既能够密切联系实际应用,又能够具备非常高的理论水准,将公式背后的统计思想揭示得非常彻底。该书非常适合自学,是一本读后让人受益匪浅的教材。

Jay L. Devore 教授编写的《Probability and Statistics for Engineering and the Sciences》[35]是一本浅显易懂的教材。该书的难度较低,为彩版教材,书中有大量的实例,方便读者直观理解书中的理论。该教材适合初级入门使用。

卡内基梅隆大学Morris H. DeGroot等教授编写的《Probability and Statistics》[36]是一本被广泛使用的教材。该书语言清晰易懂,内容深入浅出。其特色是用大量颇具启发性的例子引入论题、阐释理论和证明,大大降低了学习者的理解难度。书中的例题涉及面广,除了那些解释基本概念的一些著名例题外,还有很多新颖的例题,阐述了概率论在遗传学、排队论、计算金融学和计算机科学中的应用。

2. 多元统计分析常用教材

在概率论的初级入门阶段,我们接触的大部分均为一维随机变量。此时,对于随机变量的分析相对来说比较容易,可以避免使用矩阵理论的相关技巧来做分析和推导。当随机变量的维数为二维和更高维数时,此时对于随机变量的分析则较复杂,一般需要使用矩阵理论的相关技巧来做分析。当然也可以使用循环的方式对随机变量的每一维元素进行处理,但是这样就比较费劲,数学推导也不够优美。为此,必须对随机变量为高维的情形专门进行研究。于是就产生了多元统计分析这门课程。读者可以想象一下,将一维的高斯分布推广到高维空间会产生什么样的结果?现实生活中,影响一个事件结果的因素往往不止一个,也就是说,多元统计分析是统计分析中最常见的情形。那么,掌握好多元统计分析的相关理论和技巧就至关重要。

多元统计分析方面的推荐教材如书籍 12所示,下面逐一加以介绍。

书籍 12 多元统计分析教材推荐: (a) 应用多元统计分析 (高惠璇); (b) 多元统计分析 (王静龙); (c) An Introduction to Multivariate Statistical Analysis (T. W. Anderson); (d) Applied Multivariate Statistical Analysis (Richard A. Johnson 等)

北京大学高惠璇老师编写的《应用多元统计分析》[37]是一本结构清晰、语言平实、易于阅读的教材,国内很多高校将它作为多元统计分析课程的教材。

华东师范大学王静龙教授编写的《多元统计分析》[38]加入了许多现代统计理论的内容,理论深厚,论述严谨,证明完备,是一本不可多得的多元统计分析教材,值得一读。

T. W. Anderson 是国际统计界泰斗级的大师,其编著的经典名作《An Introduction to Multivariate Statistical Analysis 》[39]广受好评。全书结构严谨,论述流畅,逻辑清晰,内容引人入胜,可读性强,是学习多元统计分析的必读经典教材之一。

Richard A. Johnson 编著的《Applied Multivariate Statistical Analysis》[40]是一本非常友好的教材。该书浅入深出,既侧重于应用,又兼顾必要的推理论证,使学习者既能学到“如何”做,又能在一定程度上了解“为什么”这样做;最后,它内涵丰富、全面,不仅包括各种在实际中常用的多元统计分析方法,而且对现代统计学的最新思想和进展也有所介绍。

3. 测度论常用教材

测度论旨在为初等概率论与公理化的概率论之间搭起一座桥梁。如果想从事人工智能基础理论的研究,有必要学习一下测度论的内容。下面介绍几本比较著名的测度论教材供读者学习,如书籍 13所示。

书籍 13 测度论教材推荐: (a) 测度论与概率论基础 (程士宏); (b) 测度论讲义 (严加安); (c) Measure Theory and Probability Theory (Krishna B. Athreya 等); (d) Measure Theory (Paul R. Halmos)

北京大学程士宏教授编著的《测度论与概率论基础》[41]是一本测度论方面的入门级教材。该书首先呈现了在抽象分析中为建立概率论公理化系统所必需的测度论内容;在此基础上,着重讲述那些在初等概率中没有解释清楚或不可能解释清楚的概念和公式。该书叙述由浅入深,通俗易懂,难点分散,论证严谨。为了满足非数学专业出身而又必须学习公理化概率论的读者的需要,该书对于概念的解释和定理的证明都尽量做得精细,使之便于自学。该书的每一章均配有适量习题,并在书末给出大部分习题的解答或提示。

中国科学院严加安院士编写的《测度论讲义》[42]理论深厚,语言简练,学习难度较大,需要反复阅读才能体会此书内容组织的精细、理论证明的精巧。

Krishna B. Athreya等人编写的《Measure Theory and Probability Theory》[43]是一本关于测度论和概率论的教科书,它以简单易懂的方式介绍了测度论和概率论的主要概念和理论,生动地阐释了这些理论背后的数学思想,给人以深刻的启发。

Paul R. Halmos编著的《Measure Theory》[44]是一本非常经典的测度论教材。该书具有较高的理论水准,深入阐述了测度论的相关内容。该书的组织架构严谨,内容详尽而生动,概念清晰,证明过程完整,难度较大,适合对概率论水平有较高要求的人阅读。

高等概率论及高等统计学分别是概率论及数理统计的高阶内容。对于有志于进行人工智能基础理论研究的人员来说,非常有必要进行学习。一般把一簇随机变量定义为随机过程,这一簇随机变量往往与时间参数有关。随机过程是在自然科学、工程科学、社会科学各领域研究随机现象的有力工具。概率论与数理统计理论是人工智能的核心数学理论之一,除了学习其相关理论之外,能够将这些理论与人工智能结合起来才是关键。因此,必须重点学习概率论与数理统计在人工智能领域中的应用教材,为两者的结合提供思路。高等概率论与统计学、随机过程、概率论与统计学在人工智能中的应用的相关教材读者可以查阅图书《人工智能怎么学》,选择合适的教材进行学习。

关于人工智能中的概率论与统计学修炼秘籍的更多介绍,可以购买《人工智能怎么学》进一步阅读。

图书购买方式

京东:https://item.jd.com/13395339.html

当当:http://product.dangdang.com/29469230.html

天猫:https://detail.tmall.com/item_o.htm?id=687374654836

为了让图书惠及更多的读者,为更多想学习人工智能的人提供帮助,经过向出版社申请,对图书《人工智能怎么学》的部分内容进行改编和连载。图书《人工智能怎么学》的全部内容包含了初级入门、中阶提高以及高级进阶三个级别的内容。连载的内容主要是初级入门级别,适合想对人工智能进行快速和高效入门的读者,对于已有一定的人工智能学习基础,希望进一步进阶或提高的读者,则需要购买图书《人工智能怎么学》,学习中阶提高以及高级进阶的内容。此外,对于学习人工智能感兴趣的读者,也可以加入知识星球《人工智能怎么学》,知识星球是一个构建学习社群的平台,通过加入《人工智能怎么学》的社群,你将获得更多的学习资料和课程信息。

与作者互动和了解更多信息

想跟作者一起学习人工智能和互动,你可以加入如下社群:

知识星球:https://t.zsxq.com/0aLkVg0os

QQ群:600587177

想了解更多关于人工智能学习及实践的内容,请关注如下媒体:

官方网站:https://bigdatamininglab.github.io

官方微信公众号:人工智能怎么学(可扫描下方二维码或者微信搜索“人工智能怎么学”添加关注)

CSDN:https://blog.csdn.net/audyxiao001

参考文献

  1. 张文俊. 数学欣赏[M]. 北京: 科学出版社, 2011.

  1. 李文林. 数学史概论 第4版[M]. 北京: 高等教育出版社, 2021.

  1. 方开泰. 漫漫修远攻算路:方开泰自述[M]. 长沙: 湖南教育出版社, 2016.

  1. 徐品方. 数学王子——高斯[M]. 哈尔滨: 哈尔滨工业大学出版社, 2018.

  1. 同济大学数学系. 高等数学(第7版)[M]. 北京: 高等教育出版社, 2014.

  1. 李忠,周建莹. 高等数学(第2版)[M]. 北京: 北京大学出版社, 2009.

  1. Joel Hass et al.Thomas’ Calculus: Early Transcendentals (Fourteenth Edition)[M]. Pearson, 2018.

  1. Ron Larson, and Bruce Edwards. Calculus (Eleventh Edition)[M]. Cengage Learning, 2018.

  1. 华东师范大学数学科学学院. 数学分析(第5版)[M]. 北京: 高等教育出版社, 2019.

  1. 常庚哲, 史济怀. 数学分析教程(第3版)[M]. 合肥: 中国科学技术大学出版社, 2012.

  1. Walter Rudin. Principles of Mathematical Analysis (ThirdEdition) [M]. McGraw-Hill Education, 1976.

  1. Vladimir A. Zoric. Mathematical Analysis (Second Edition)[M]. Springer, 2016.

  1. Elias M. Stein, and RamiShakarchi. Real Analysis: Measure Theory, Integration, and Hilbert Spaces [M]. Princeton University Press,2004.

  1. Elias M. Stein, and Rami Shakarchi. Complex Analysis [M]. Princeton University Press,2005.

  1. Elias M. Stein, and Rami Shakarchi. Fourier Analysis: AnIntroduction [M]. PrincetonUniversity Press,2003.

  1. Elias M. Stein, and Rami Shakarchi. Functional Analysis:Introduction to Further Topics in Analysis[M]. Princeton University Press, 2011.

  1. 丘维声. 简明线性代数[M]. 北京: 北京大学出版社, 2002.

  1. 居于马. 线性代数(第2版)[M]. 北京: 清华大学出版社, 2002.

  1. 李尚志. 线性代数[M]. 北京: 高等教育出版社, 2002.

  1. 李炯生. 线性代数(第2版)[M]. 合肥: 中国科学技术大学出版社, 2010.

  1. 龚昇. 线性代数(第2版)[M]. 合肥: 中国科学技术大学出版社, 2005.

  1. 任广千, 谢聪, 胡翠芳. 线性代数的几何意义[M]. 西安: 西安电子科技大学出版社, 2015.

  1. Kuldeep Singh. Linear Algebra: Step by Step [M]. OxfordUniversity Press,2014.

  1. Gilbert Strang. Introduction to Linear Algebra (FifthEdition) [M]. Wellesley-Cambridge Press, 2016.

  1. David C. Lay et al. Linear Algebra and Its Application (FifthEdition) [M]. Pearson,, 2016.

  1. Sheldon Axler. Linear Algebra Done Right (Third Edition) [M].Springer, 2015.

  1. Gerald Farin, and Dianne Hansford. Practical Linear Algebra:A Geometry Toobox (Third Edition) [M]. CRC Press, 2013.

  1. Gilbert Strang. Linear Algebra and Learning from Data [M].Wellesley-Cambridge Press, 2019.

  1. 徐仲. 矩阵论简明教程(第3版)[M]. 北京: 科学出版社, 2014.

  1. 张贤达. 矩阵分析与应用(第2版)[M]. 北京: 清华大学出版社, 2013.

  1. Gene H. Golub, and Charles F. Van Loan. Matrix Computation(Fourth Edition) [M]. The Johns Hopkins University Press, 2013.

  1. Roger A. Horn, and Charles R. Johnson. Matrix Analysis(Second Edition) [M]. Cambridge University Press, 2013.

  1. 盛骤, 谢式千, 潘承毅. 概率论与数理统计(第4版)[M]. 北京: 高等教育出版社, 2008.

  1. 陈希孺. 概率论与数理统计[M]. 合肥: 中国科学技术大学出版社, 2017.

  1. Jay L. Devore. Probability and Statistics for Engineering andthe Sciences (Ninth Edition) [M]. Cengage Learning, 2016.

  1. Morris H. DeGroot, and Mark J. Schervish . Probabilityand Statistics (Forth Edition) [M]. Pearson, 2012.

  1. 高惠璇. 应用多元统计分析[M]. 北京大学出版社, 2004.

  1. 王静龙. 多元统计分析[M]. 科学出版社, 2008.

  1. T. W. Anderson. An Introduction to Multivariate StatisticalAnalysis (Third Edition) [M]. John Wiley & Sons, 2003.

  1. Richard A. Johnson, and Dean W. Wichern . Applied Multivariate Statistical Analysis (SixthEdition) [M]. Pearson, 2007.

  1. 程士宏. 测度论与概率论基础[M]. 北京: 北京大学出版社, 2004.

  1. 严加安. 测度论讲义(第2版)[M]. 北京: 科学出版社, 2004.

  1. Krishna B. Athreya, and Soumendra N. Lahiri. Measure Theoryand Probability Theory (Third Edition) [M]. Springer, 2006.

  1. Paul R. Halmos. Measure Theory [M]. Springer Science+Business Media, 1974.

  1. 胡迪鹤. 高等概率论及其应用[M]. 北京: 高等教育出版社, 2008.

  1. 郑忠国. 高等统计学[M]. 北京: 北京大学出版社, 2012.

  1. Craig A. Mertler, and Rachel Vannatta Reinhart. Advanced andMultivariate Statistical Methods: Practical Application and Interpretation(Sixth Edition) [M]. Routledge, 2017.

  1. Eugene Demidenko. Advanced Statistics with Applications in R[M]. John Wiley & Sons, 2020.

  1. 何书元. 随机过程[M]. 北京: 北京大学出版社, 2008.

  1. 张波, 张景肖. 应用随机过程[M]. 北京: 清华大学出版社, 2004.

  1. Sheldon M. Ross. Introduction to Probability Models (TwelfthEdition) [M]. Academic Press, 2019.

  1. Robert G. Gallager. Stochastic Processes: Theory forApplications [M]. John Wiley & Sons, 2013.

  1. David Forsyth. Probability and Statistics for ComputerScience (Twelfth Edition) [M]. Springer, 2018.

  1. Luc Devroye et al. A Probabilistic Theory of PatternRecognition [M]. Springer, 1997.

  1. 《运筹学》教材编写组. 运筹学(第4版)[M]. 北京: 清华大学出版社, 2013.

  1. 胡运权, 郭耀煌. 运筹学教程(第5版)[M]. 北京: 清华大学出版社, 2018.

  1. Frederick S. Hillier, and Gerald J. Lieberman. Introductionto Operation Research (Tenth Edition) [M]. McGraw-Hill Education, 2015.

  1. Hamdy A. Taha. Operation Research:An Introduction(Tenth Edition) [M]. Pearson, 2017.

  1. 陈宝林. 最优化理论与算法(第2版)[M]. 北京: 清华大学出版社, 2018.

  1. 高立. 数值最优化方法[M]. 北京: 北京大学出版社, 2014.

  1. Edwin K. P. Chong, and Stanislaw H. Zak. An Introduction toOptimization (Fourth Edition) [M]. John Wiley & Sons, 2013.

  1. Jorge Nocedal, and Stephen J. Wright. Numerical Optimization(Second Edition) [M]. Springer, 2006.

  1. Stephen Boyd, and Lieven Vandenberghe. Convex Optimization[M]. Cambridge University Press, 2004.

  1. Yuni Nesterov. Lectures on Convex Optimization (SecondEdition) [M]. Springer, 2018.

  1. 李航. 统计学习方法(第2版)[M]. 北京: 清华大学出版社, 2019.

  1. 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.

  1. Yuni Nesterov. The Elements of Statistical Learning: DataMining, Inference, and Prediction (Second Edition) [M]. Springer, 2009.

  1. Tom M. Mitchell. Machine Learning [M]. McGraw-Hill Education,1997.

  1. Christopher Bishop. Pattern Recognition and Machine Learning[M]. Springer, 2006.

  1. Mehryar Mohri et al. Foundation of Machine Learning (SecondEdition) [M]. The MIT Press, 2018.

  1. Kevin P. Murphy. Probabilistic Machine Learning: AnIntroduction [M]. The MIT Press, 2022.

  1. Shai Shalev-Shwartz, and Shai Ben-David. UnderstandingMachine Learning: From Theory to Algorithms [M]. Cambridge University Press,2014.

  1. Ian Goodfellow etal. Deep Learning [M]. The MIT Press, 2016.

  1. 杨强, 张宇, 戴文渊, 潘嘉林 . 迁移学习[M]. 北京: 机械工业出版社, 2020.

  1. 杨强, 刘洋,程勇 等. 联邦学习[M]. 北京: 中国工信出版集团, 电子工业出版社, 2020.

  1. 周志华. 集成学习:基础与算法(第2版)[M]. 李楠, 译. 北京: 清华大学出版社, 2019.

  1. Richard S. Sutton, and Andrew G. Barto. ReinforcementLearning: An Introduction [M]. The MIT Press, 2018.

  1. Amparo Albalate, and Wolfgang Minker. Semi-Supervised andUnsupervised Machine Learning [M]. ISTE, and John Wiley & Sons, 2011.

  1. Christoph Molnar. Interpretable Machine Learning: A Guide forMaking Black Box Models Expainable [M]. lulu.com, 2020.

  1. Judea Pearl. Causality: Models, Reasoning, and Inference(Second Edition) [M]. Cambridge University Press, 2009.

注:本文版权归作者个人所有,如需转载请联系作者,未经授权不得转载。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值