判断一个数是否是素数

判断一个数是否是素数
给定一个整数,判断它是否是素数。由数学知识可得知:只要m能被2,3,…,m-1中的任何一个数整除,那么它就不是素数,否则就是素数。根据这一思路,我们用一个循环过程及判断一个数是否能被整除的方法构造出下面的算法:
int isp(int m)
{
int i=0;
for(i=2;i<m;i++)
if(m%i==0) return 0;
return 1;
}
思路非常清晰:使i从2开始递增,每次循环都判断是否能被I整除:如果能被整除则表明m不是素数,返回0,退出此函数。如果I 循环到最后,也没有一个数使m能被整除,则表明m使素数,于是执行最后一句,返回1。
这个问题还有另外一种做法,思路基本相同,但是使用了另外一种编程思想:使用一个标志来判断是否被整除过。这种编程思路也是计算机等级考试经常考的,所以这里介绍一下,在后面的编程中还要用到这种思想。
做法2:
int isp(int m)
{
int i=0;
int flag=0;
for(i=2;i<m;i++)
if(m%i==0) flag=1;
if (flag==1) return 0;
else return 1;
}
这里的flag我们可以称它为一个标志,其初始值为0,一旦在循环中发现m能被某个数整除了,则将m赋值为1,等循环执行完后根据flag的值判断m是否为素数。
使用实例如下面程序:
#include "Stdio.h"
#include "Conio.h"
main()
{
int num=0;
printf("请输入一个整数\n");
scanf("%d",&num);
if (isp(num)==1)
printf("是素数\n");
else
printf("不是素数\n");

阅读更多
文章标签: 编程 算法
个人分类: c++MFC学习笔记
上一篇求ax^2+bx+c=0的根
下一篇求两个正整数的最大公约数
想对作者说点什么? 我来说一句

Miller-Rabin算法C++程序

2010年09月11日 659B 下载

没有更多推荐了,返回首页

关闭
关闭