离散傅里叶变换DFT

  DFT是为适应计算机分析傅里叶变换规定的一种专门运算,本章是数字信号处理课程的重点章节。
  3.7DFT进行频谱分析
  1.用DFT对连续信号进行谱分析
  (1)原理
     

  (2)频率分辨率与DFT参数的选择
  频率分辨率是指所用的算法能将信号中两个靠得很近的谱峰分开的能力。
  设是一个带限的连续时间信号,最高频率为fc,根据时域采样定理,采样频率fs>2fc,一般取
  对在时间长度为Tp的一段上抽取N点,得到一个长度为N的有限长序列x(n),则有
    
  由于fs对应于数字频率,对x(n)作N点DFT,则数字域的频率分辨率
    
  此时,相应的模拟域的频率分辨率
    
  上式说明:如果保持采样点数N不变,要提高谱的分辨率(F减小),必须降低采样速率,采样速率的降低会引起谱分析范围减少;如维持fs不变,为提高分辨率可以增加采样点数N
  2.用DFT进行谱分析的误差问题
  (1)混叠现象
  
利用DFT逼近连续时间信号的傅里叶变换,为避免混叠失真,按照抽样定理的要求,采样频率至少是信号最高频率的两倍。
  解决混叠问题的唯一方法是保证采样频率足够高
  (2)截断效应
  利用DFT处理非时限序列时,须将该序列截断。设序列的频谱为,矩形窗函数的频谱为,则截断后序列的频谱为
    
    
  由于矩形窗函数频谱的引入,使卷积后的频谱被展宽了,称为频谱泄露(截断效应)。
  减少方法:选择适当形状的窗函数,如汉宁窗或汉明窗等。
  (3)栅栏效应
  DFT是有限长序列的频谱等间隔采样,相当于透过一个栅栏去观察原来信号的频谱,这种现象称为栅栏效应。
    
  减小栅栏效应的方法:末尾补零
  补零没有对原信号增加任何新的信息,因此不能提高频率分辨率。补零的目的:使数据N为2的整数次幂,以便于用快速傅里叶变换算法(FFT),而且补零还可对原X(k)做插值。

### Flink 大数据处理优化技巧与最佳实践 #### 调优原则与方法概述 对于Flink SQL作业中的大状态导致的反压问题,调优的核心在于减少状态大小以及提高状态访问效率。通过合理配置参数和调整逻辑设计可以有效缓解此类瓶颈[^1]。 #### 参数设置建议 针对不同版本下的具体特性差异,在实施任何性能改进措施前应当充分理解当前使用的Flink版本特点及其局限性;同时也要考虑特定应用场景的需求特征来定制化解决方案。这包括但不限于并行度设定、内存分配策略等方面的选择[^2]。 #### 数据流模式优化 采用广播变量机制可作为一种有效的手段用于降低主数据流转过程中所需维护的状态量级。当存在一对多关系的数据集间需频繁交互时,将较小规模的一方作为广播状态保存下来供另一方查询匹配使用不失为明智之举。此方式特别适用于维表Join操作中,其中一方变动相对较少但又必须保持最新记录的情况[^3]。 ```sql -- 创建临时视图以支持后续JOIN操作 CREATE TEMPORARY VIEW dim_table AS SELECT * FROM kafka_source; -- 定义Temporal Table Function以便获取指定时间点上的历史快照 CREATE FUNCTION hist_dim_table AS 'com.example.HistoricalDimTableFunction'; -- 执行带有时态条件约束的JOIN语句 SELECT o.order_id, d.product_name FROM orders o LEFT JOIN LATERAL TABLE(hist_dim_table(o.event_time)) AS d ON o.product_id = d.id; ``` 上述代码片段展示了如何利用Flink SQL实现基于时间戳的历史维度表连接功能,从而确保每次都能准确捕捉到事件发生瞬间对应的最恰当的产品名称信息。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值