大数据调优总结

一、 MapReduce

1、数据倾斜调优

数据中不可避免地会出现离群值(outlier),并导致数据倾斜。这些离群值会显著地拖慢MapReduce的执行。
数据倾斜会导致map和reduce的任务执行时间大为延长,也会让需要缓存数据集的操作消耗更多的内存资源

常见的数据倾斜有以下几类:

  • 1)数据频率倾斜——某一个区域的数据量要远远大于其他区域。比如某一个key对应的键值对远远大于其他键的键值对。
    • 2)数据大小倾斜——部分记录的大小远远大于平均值。

2、如何诊断哪些键存在数据倾斜?

  • 发现倾斜数据之后,有必要诊断造成数据倾斜的那些键。有一个简便方法就是在代码里实现追踪每个键的最大值
  • 为了减少追踪量,可以设置数据量阀值,只追踪那些数据量大于阀值的键,并输出到日志中。
  • 运行作业后就可以从日志中判断发生倾斜的键以及倾斜程度;跟踪倾斜数据是了解数据的重要一步,也是设计MapReduce作业的重要基础

1)预聚合

提前在map进行combine,减少传输的数据量

2)自定义分区

根据数据分布情况,自定义散列函数,将key均匀分配到不同Reducer

3)局部聚合加全局聚合。

二次mr,第一次将key随机散列到不同reducer进行处理达到负载均衡目的。第二次再根据去掉key的随机前缀,按原key进行reduce处理,性能稍差。

4)增加Reducer,提升并行度

JobConf.setNumReduceTasks(int)

5)数据大小倾斜,

调参line.maxlength,限制RecordReader读取最大长度。

2、MR优化

Map阶段优化

(1)增大环形缓冲区大小。由100m扩大到200m
(2)增大环形缓冲区溢写的比例。由80%扩大到90%
(3)减少对溢写文件的merge次数。(10个文件,一次20个merge)
(4)不影响实际业务的前提下,采用Combiner提前合并,减少 I/O。

Reduce阶段优化

(1)合理设置Map和Reduce数:两个都不能设置太少,也不能设置太多。太少,会导致Task等待,延长处理时间;太多,会导致 Map、Reduce任务间竞争资源,造成处理超时等错误。
(2)设置Map、Reduce共存:调整slowstart.completedmaps参数,使Map运行到一定程度后,Reduce也开始运行,减少Reduce的等待时间。
(3)规避使用Reduce,因为Reduce在用于连接数据集的时候将会产生大量的网络消耗。
(4)增加每个Reduce去Map中拿数据的并行数
(5)集群性能可以的前提下,增大Reduce端存储数据内存的大小。

IO传输

采用数据压缩的方式,减少网络IO的时间。安装Snappy和LZOP压缩编码器。

压缩:

(1)map输入端主要考虑数据量大小和切片,支持切片的有Bzip2、LZO。注意:LZO要想支持切片必须创建索引。
(2)map输出端主要考虑速度,速度快的snappy、LZO。
(3)reduce输出端主要看具体需求,例如作为下一个mr输入需要考虑切片,永久保存考虑压缩率比较大的gzip。

3、如何减小reduce端数据倾斜

数据频率倾斜 ,常用方式有:分区、预聚合

1、自定义分区:基于输出键的背景知识,进行自定义分区。

例如,如果map输出键的单词来源于一本书。其中大部分必然是省略词(stopword)。那么就可以将自定义分区将这部分省略词发送给固定的一部分reduce实例。而将其他的都发送给剩余的reduce实例。

2、Combine预聚合:使用Combine,可大量减小数据频率倾斜和数据大小倾斜。combine的目的就是聚合并精简数据。

3、抽样和范围分区

  • Hadoop默认的分区器是HashPartitioner,基于map输出键的哈希值分区。这仅在数据分布比较均匀时比较好。在有数据倾斜时就很有问题。
  • 使用分区器,需要首先了解数据的特性。TotalOrderPartitioner中,可以通过对原始数据进行抽样得到的结果集来预设分区边界值
  • TotalOrderPartitioner中的范围分区器可以通过预设的分区边界值进行分区。因此它也可以很好地用在矫正数据中的部分键的数据倾斜问题。

4、数据大小倾斜

在map端或reduce端的数据大小倾斜,都会对缓存造成较大的影响,乃至OOM异常。

方法就是:根源上处理;以及设置RecordReader读取的line.maxlength最大长度,默认无限制

  • 设置mapreduce.input.linerecordreader.line.maxlength,来限制RecordReader读取的最大长度。
  • RecordReader在TextInputFormat和KeyValueTextInputFormat类中使用。默认长度没有上限。

二、hive调优

1、配置上开启:Fetch抓取、 本地模式、 严格模式、数据压缩、并行执行

1)开启Fetch抓取,不必使用MapReduce计算

对某些情况的查询可以不必使用MapReduce计算,在全局查找、字段查找、limit查找等都不走mapreduce。
把hive-default.xml.template文件中hive.fetch.task.conversion设置成more,然后执行查询语句,查询方式都不会执行mr程序。 默认是more,(老版本minimal);设置成none,然后执行查询语句,都会执行mapreduce程序

2)开启本地模式:如果数据量小,只启动一个Maptask

默认情况下是启用hadoop的job模式,把任务提交到集群中运行,这样会导致计算非常缓慢;

开启本地模式,并执行查询语句

set hive.exec.mode.local.auto=true; //开启本地mr

3)开启严格模式,禁止3种类型的查询

开启严格模式,可以禁止3种类型的查询。

  • 分区表,where 含有分区字段 过滤条件 来限制范围,否则不允许执行
  • order by,必须使用limit语句
  • 限制笛卡尔积的查询

防止用户执行,那些可能意想不到的不好的影响的查询。
配置:set hive.mapred.mode=strict; 默认是非严格模式nonstrict

4)开启数据的压缩,

Hive表中间数据压缩Hive表最终输出结果压缩,

5)设置并行执行

把一个sql语句中没有相互依赖的阶段,并行去运行,提高集群资源利用率配置:
set hive.exec.parallel=true;
set hive.exec.parallel.thread.number=16;

2、开发上:表的join优化、列裁剪、 限制笛卡尔积、避免数据倾斜

1)表的join优化

  • 1)老版本hive,大小表 join 时,小表放在join的左边;
  • 2)大表 join 大表 时,空 key 过滤,空 key 赋一个随机的值;
  • 3)map join ,在Map端先进行部分聚合,最后在Reduce端得出最终结果;
  • 4)count distinct,使用先group by 再count的方式替换;
  • 5)多个表关联时,最好分拆成小段,避免大sql(无法控制中间Job);

2)使用分区剪裁、列剪裁 ,

  • 尽可能早地过滤掉尽可能多的数据量,避免大量数据流入外层SQL。
  • 尽量使用分区过滤,少用select *

3)限制笛卡尔积的查询

4)避免数据倾斜:

合理设置Map数 ;合理设置Reduce数;
小文件合并; 复杂文件增加Map数 ;

三、spark调优

1、资源调优:

(1)分配更多的资源:executor-memory、executor-cores、driver-memory

(2)提高并行度:task的数量cpu core数量的2~3倍,使用rdd.repartition 来重新分区

2、开发调优

(1)RDD持久化

可以把多次使用到的rdd,也就是公共rdd进行持久化,避免后续需要,再次重新计算,提升效率。

可以调用rdd的cache或者persist方法。

  • 1)cache方法默认是把数据持久化到内存中 ,例如:rdd.cache ,其本质还是调用了persist方法
  • 2)persist方法中有丰富的缓存级别,这些缓存级别都定义在StorageLevel这个object中,可以结合实际的应用场景合理的设置缓存级别。例如:
    rdd.persist(StorageLevel.MEMORY_ONLY),这是cache方法的实现。

(2)使用广播变量

若要处理的共享数据量非常大,并且一个stage中出现大量的task
,会通过网络将数据传输到各个task中去,给task使用,会涉及大量的网络传输开销与内存开销,可能会导致频繁的垃圾回收器的回收GC。

一些维度数据进行广播,该executor上的各个task再从所在节点的BlockManager获取变量,而不是从Driver获取变量,从而提升了效率。

task在运行的时候,想要使用广播变量中的数据,此时首先会在自己本地的Executor对应的BlockManager中,尝试获取变量副本;如果本地没有,那么就从Driver远程拉取广播变量副本,并保存在本地的BlockManager中;此后这个executor上的task,都会直接使用本地的BlockManager中的副本。

注意:
(1)不能将一个RDD使用广播变量广播出去,因为RDD是不存储数据的。可以将RDD的结果广播出去。
(2)广播变量只能在Driver端定义,不能在Executor端定义。
(3)在Driver端可以修改广播变量的值,在Executor端无法修改广播变量的值。
(4)如果executor端用到了Driver的变量,如果不使用广播变量在Executor有多少task就有多少Driver端的变量副本。
(5)如果Executor端用到了Driver的变量,如果使用广播变量在每个Executor中只有一份Driver端的变量副本。

配置:
  (1)通过sparkContext的broadcast方法把数据转换成广播变量,类型为Broadcast,
  val broadcastArray: Broadcast[Array[Int]] = sc.broadcast(Array(1,2,3,4,5,6))
  (2) 然后executor上的BlockManager就可以拉取该广播变量的副本获取具体的数据。
  获取广播变量中的值可以通过调用其value方法
	 val array: Array[Int] = broadcastArray.value

(3)避免shuffle类算子, joingroupByKey distinctrepartition

shuffle涉及到数据要进行大量网络传输,下游阶段task任务需要通过网络拉取上阶段task输出数据,将分布在集群中多个节点上的同一个key,拉取到同一个节点上,进行聚合或join等操作。比如reduceByKey、join等算子,都会触发shuffle操作。

解决方法:

1) Broadcast+map代替join操作

传统的join操作会导致shuffle操作。因为两个RDD中,相同的key都需要通过网络拉取到一个节点上,由一个task进行join操作。

使用Broadcast将一个数据量较小的RDD作为广播变量。Broadcast+map的join操作,不会导致shuffle操作。

2) reduceByKey或aggregateByKey代替groupByKey ,进行预聚合
  • reduceByKey/aggregateByKe
  • 4
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值