1.前沿
数据可视化是数据描述的学科,数据可视化有利于我们更好的展示数据、分析数据等等。
不同维数数据展示
一维数据(玫瑰图)
二维数据
三维数据
1.云图
[X, Y, Z] = peaks;
contour(X,Y,Z,20)
fig2plotly()
四维数据,多维数据
1.Box Plots(matlab)
load carsmall
boxplot(MPG,Origin)
title('Miles per Gallon by Vehicle Origin')
xlabel('Country of Origin')
ylabel('Miles per Gallon (MPG)')
箱线图就是将每一维数据单独表示,忽略了数据之间的交互性,但可以展示出单一维度数据的离散程度,箱线的蓝色方框边界代表1/4数,3/4数,红线代表中位数。
2.Parallel coordinates plot(matlab)
load fisheriris
labels = {'Sepal Length','Sepal Width','Petal Length','Petal Width'};
parallelcoords(meas,'Group',species,'Labels',labels)
直观可视的多维数据可视化,每一条数轴代表单一维度的数据。
可视化工具
Citespace
http://cluster.cis.drexel.edu/~cchen/citespace/
Gephi
plotly
plotly支持matlab,python,R等等各种语言,下载安装方式(API library)
https://plot.ly/api/,可供学习安装
echart
echarts是百度提供的开源数据可视化项目,可下载到本地运行,也可以利用已有样例修改即可,提供作图种类也很丰富。http://echarts.baidu.com
本篇文章主要介绍各类工具,接下来的博客中将逐个介绍相关绘图使用技巧,欢迎大家关注。