[视觉工程]多维数据可视化

本文探讨了在视觉工程领域中如何有效地进行多维数据的可视化,通过深入研究housing.csv数据集,展示了如何利用各种可视化工具揭示复杂数据背后的模式和趋势。通过对不同维度的交互式展示,帮助读者理解并解析高维数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import pandas as pd

housing = pd.read_csv("housing.csv")
housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.4, s=housing["population"]/100, label="population", figsize=(10,7),c="median_house_value", cmap=plt.get_cmap("jet"), colorbar=True,)
plt.legend()

housing.csv

  longitude latitude housing_median_age total_rooms total_bedrooms population households median_income median_house_value ocean_proximity
2260 -119.84 36.78 24 3242 795 2764 773 1.3385 58800 INLAND
15778 -122.41 37.78 52 1534 763 1520 614 1.4554 375000 NEAR BAY
12511 -121.43 38.55 44 3514 714 1509 656 2.7333 100100 INLAND
4595 -118.28 34.05
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值