离散数学第一章 命题逻辑

第一章 命题逻辑

1-2联结词

PQ¬PP∧QP∨QP→QP⇄Q
TTFTTTT
TFFFTFF
FTTFTTF
FFTFFTT

tips: P→Q ~ ¬P∨Q

P⇄Q⇔(P→Q)∧(Q→P)

P⇄Q⇔(P∧Q)∨(¬P∧¬Q)

P不可兼或Q⇔(¬P∨¬Q)∧(P∨Q)

1-4真值表与等价公式

真值表

定义

在命题公式中,对于分量指派真值的各种可能组合,就确定了这个命题公式的各种真值情况,把它汇成列表,就是命题公式的真值表。

例题

例题1 :构造¬P∨Q的真值表

PQ¬P¬P∨Q
TTFT
TFFF
FTTT
FFTT

例题2:给出(P∧Q)∨(¬P∧¬Q)的真值表

PQ¬P¬QP∧Q¬P∧¬Q(P∧Q)∨(¬P∧¬Q)
TTFFTFT
TFFTFFF
FTTFFFF
FFTTFTT

等价公式

定义

给定两个命题公式A和B,设P1,P2,…,Pn为所有出现于A和B中的原子变元,若给P1,P2,…,Pn任一组真值指派,A和B的真值都相同,则称A和B是等价的或逻辑相等。记作A ⇔B。

常见等价公式
命题定律表达式
对合律¬¬P⇔P
幂等律P∨P⇔P,P∧P⇔P
结合律(P∨Q)∨R⇔P∨(Q∨R)
(P∧Q)∧R⇔P∧(Q∧R)
交换律P∨Q⇔Q∨P
P∧Q⇔Q∧P
分配律P∨(Q∧R)⇔(P∨Q)∧(P∨R)
P∧(Q∨R)⇔(P∧Q)∨(P∧R)
吸收律P∨(P∧Q)⇔P
P∧(P∨Q)⇔P
德·摩根律¬(P∨Q)⇔¬P∧¬Q
¬(P∧Q)⇔¬P∨¬Q
同一律P∨F⇔P,P∧T⇔P
零律P∨T⇔T,P∧F⇔F
否定律P∨¬P⇔T,P∧¬P⇔F
例题

例题1 :证明:(P∧Q)∨(P∧¬Q)⇔P.

解:(P∧Q)∨(P∧¬Q)⇔((P∧Q)∨P)∧((P∧Q)∨¬Q)⇔P∧((P∧Q)∨¬Q)⇔P∧(Q∨¬Q)⇔P∧T⇔P

例题2:证明:P→(Q→R)⇔Q→(P→R)⇔¬R→(Q→¬P)

解:P→(Q→R)⇔¬P∨(¬Q∨R)⇔¬Q∨(¬P∨R)⇔Q→(P→R)

​ P→(Q→R)⇔¬P∨(¬Q∨R)⇔R∨(¬Q∨¬P)⇔¬R→(Q→¬P)

1-5重言式与蕴含式

重言式定义

  1. 给定一命题公式,若无论对分量作怎样的指派,其对应的真值永为T,则称该命题公式为重言式或永真公式。
  2. 给定一命题公式,若无论对分量作怎样的指派,其对应的真值永为F,则称该命题公式为矛盾式或永假公式。
  3. 任何两个重言式的合取或析取,仍然是一个重言式。
  4. 一个重言式,对同一分量都用任何合式公式置换,其结果仍为一重言式。
  5. 设A,B为两个命题公式,A⇔B当且仅当A⇄B为一个重言式。

蕴含式定义

当且仅当P→Q是一个重言式时,我们称“P蕴含Q”,并记作P⇒Q。

因为P→Q是不对称的,即P→Q与Q→P不等价,对P→Q来说,Q→P称作它的逆换式;¬P→¬Q称为它的反换式;¬Q→¬P称它的逆反式。

P→Q⇔(¬Q→¬P)

Q→P⇔(¬P→¬Q)

常用蕴含式

P∧Q⇒P,P∧Q⇒Q
P⇒P∨Q
P∧(P→Q)⇒Q
(P→Q)∧(Q→R)⇒P→R
(P⇄Q)∧(Q⇄R)⇒(P⇄R)
¬P∧(P∨Q)⇒Q

1-7对偶与范式

对偶

1.定义

在给定的命题公式中,将联结词∨换成∧,将∧换成∨,若有特殊变元FT亦相互取代,所得公式A*称为A的对偶式(A也是A *的对偶式)

例:写出¬(P∨Q)∧(P∨¬(Q∧¬S))的对偶式

解: ¬(P∧Q)∨(P∧¬(Q∨¬S))

2.定理

1.设A和A* 是对偶式,P1 , P2 , … , Pn是出现在A和A* 中的原子变元,则:

¬A(P1,P2,…,Pn) ⇔ A* (¬P1,¬P2,…,¬Pn)

A (¬P1,¬P2,…,¬Pn) ⇔ ¬A* (P1,P2,…,Pn)

2.设P1,P2,…,Pn是出现在公式A和B中的所有原子变元,如果A⇔B,则 A *⇔B *

范式

合取范式与析取范式

合取范式:一个命题公式称为合取范式,当且仅当它具有型式:A1∧A2∧A3∧…An, (n>=1),其中A1,A2,…,An都是由命题变元或其否定所组成的析取式。

例如(P∨¬Q∨R)∧(¬P∨Q)∧¬Q是一个合取范式。

析取范式:一个命题公式称为析取范式,当且仅当它具有型式:A1∨A2∨A3∨…An, (n>=1),其中A1,A2,…,An都是由命题变元或其否定所组成的合取式。

例如¬P∨(P∧Q)∨(P∧¬Q∧R)是析取范式。

tips:单个元素既是合取范式又是析取范式

主范式

为了使任意一个命题公式,化为唯一一个等价命题的标准形式,下面介绍主范式的有关概念

小项

n个命题变元的合取式,称作布尔合取或小项,其中每个变元与它的否定不能同时存在,但两者必须出现且仅出现一次。

例如,两个命题变元P和Q,其小项为:P∧Q,P∧¬Q,¬P∧Q,¬P∧¬Q

一般说来,n个命题变元共有2^n个小项。

PQP∧QP∧¬Q¬P∧Q¬P∧¬Q
TTTFFF
TFFTFF
FTFFTF
FFFFFT
  • 从这个真值表中可以看到,没有两个小项是等价的,且每个小项都只对应P和Q的一组真值指派,使得该小项的真值为T。
  • 作出一种编码,使n个变元的小项可以很快地写出来。设P,Q为两个命题变元,其真值T和F分别记为“1”和“0”

​ m11=P∧Q , m10=P∧¬Q , m01=¬P∧Q , m00=¬P∧¬Q

性质

  1. 每一个小项当其真值指派与编码相同时,其真值为T,在其余2^n - 1种指派情况下均为F
  2. 任意两个不同小项的合取式永假
  3. 全体小项的析取式永为真
主析取范式

在真值表中,一个公式的真值为T的指派所对应的小项的析取,即为此公式的主析取范式(例:书P35 例题8)

除了用真值表方法外,也可以利用等价公式构成主析取范式(例:书P35 例题9、10)

一个命题公式的主析取范式可由两种方法构成。其推演步骤可归纳为:

  1. 化归为析取范式
  2. 除去析取范式中所有永假的析取项。
  3. 将析取式中重复出现的合取项和相同的变元合并
  4. 对合取项补入没有出现的命题变元,即添加(P∨¬P)式,然后利用分配律展开公式
大项

n个命题变元的析取式,称作布尔析取或大项,其中每个变元与它的否定不能同时存在,但两者必须出现且仅出现一次。

M11=P∨Q ,M10=P∨¬Q , M01=¬P∨Q , M00=¬P∨¬Q

性质

  1. 每一个大项当其真值指派与编码相同时,其真值为F,在其余2^n - 1种指派情况下均为T
  2. 任意两个不同大项的析取式永真
  3. 全体大项的合取式永为假
主合取范式

对于给定的命题公式,一个公式的真值为F的指派所对应的大项的合取,即为此公式的主合取范式。

推演步骤可归纳为:

  1. 化归为合取范式
  2. 除去合取范式中所有永真的合取项。
  3. 将合取式中重复出现的析取项和相同的变元合并
  4. 对析取项补入没有出现的命题变元,即添加(P∧¬P)式,然后利用分配律展开公式

1-8推理理论

定义

设A和C是两个命题公式,当且仅当A→C为一重言式,即A⇒C,称C是A的有效结论。或C可由A逻辑地推出。

这个定义可以推广到有n个前提的情况:设H1,H2,…,Hn,C是命题公式,当且仅当

H1∧ H1∧ …∧Hn⇒C

称C是一组前提H1,H2,…,Hn的有效结论。

方法

判别有效结论的过程就是论证过程,论证方法千变万化,但基本方法是真值表法、直接证法和间接证法。

(1).真值表法

若从真值表上找出H1, H2, …,Hm真值均为T的行,对于每-一个这样的行,若C也有真值T,则(A)式成立,或者看C的真值为F的行,在每一个这样的行中,H1, H2,…, Hm的真值中至少有一个为F,则(A)式也成立。

在这里插入图片描述

(2).直接证法

直接证法就是由一组前提,利用一些公认的推理规则,根据已知的等价或蕴含公式,推演得到有效的结论。

P规则:前提在推导过程中的任何时候都可以引入使用。

T规则:在推导中,如果有一个或多个公式、重言蕴含着公式S,则公式S可以引入推导之中。

I表(蕴含式):
在这里插入图片描述

E表(等价):

在这里插入图片描述

例题

在这里插入图片描述

(3).间接证法
反证法

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6nLmrU5L-1616493868846)(C:\Users\27745\AppData\Roaming\Typora\typora-user-images\image-20210323175814877.png)]

CP规则

由(S∧R)⇒C,证得S⇒(R→C)称为CP规则

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-E8QrahyX-1616493868848)(C:\Users\27745\AppData\Roaming\Typora\typora-user-images\image-20210323180129913.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-raoJb2p6-1616493868849)(C:\Users\27745\AppData\Roaming\Typora\typora-user-images\image-20210323180149139.png)]

  • 14
    点赞
  • 62
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值