BG的本性
更舒适的体验
算法一:
- 我还会暴力!模拟一下
- 复杂度 O ( n m ) O(nm) O(nm), 期望得分10
- 算法二:
- 用线段树优化枚举,直接找可行点
- 复杂度 O ( a n s log 2 n ) O(\mathrm{ans} \log_2 n) O(anslog2n),期望得分10~20
- 算法三:
- 用并查集优化枚举顺序,把已经没用的点的fa 指向它的后一个,非常高效
- 不知道有没有人能过第5 个点,很期待常数帝出现
- 复杂度 O ( α ( n ) + a n s ) O(\alpha(n)+\mathrm{ans}) O(α(n)+ans), 期望得分40
- 算法四:
- sort+树状数组
- 把包子桶按可以使用的次数排序,逐一计算每个桶的时效时间(每次处理从上一次吃完某个桶到这一次吃完某个桶)
- 树状数组记录桶的使用情况,可以用就是1,不能用就是0,利用树状数组可以计算前缀和(可以用线段树代替)
- (开始处理从上一次吃完某个桶到这一次吃完某个桶)首先可以一圈一圈地减,这时走一圈的消耗是还剩下的桶的个数
- 当当前桶的使用次数走不完一圈时,可以计算一个最远扩展范围,也就是它完全用完的那一时刻的所在位置。这个可以用二分求, log 2 n \log^2n log2n 也是可过的,不过这个其实和求 K 大是一样的,直接在树状数组上二分就可以了(和在线段树上处理一个道理,掌握树状数组上的二分有利于深刻更理解地树状数组)。
- 复杂度 O ( n log 2 n ) O(n\log_2n) O(nlog2n),期望得分100