BG的本性

BG的本性

更舒适的体验

算法一:

  • 我还会暴力!模拟一下
  • 复杂度 O ( n m ) O(nm) O(nm), 期望得分10
  • 算法二:
    • 用线段树优化枚举,直接找可行点
    • 复杂度 O ( a n s log ⁡ 2 n ) O(\mathrm{ans} \log_2 n) O(anslog2n),期望得分10~20
  • 算法三:
    • 用并查集优化枚举顺序,把已经没用的点的fa 指向它的后一个,非常高效
    • 不知道有没有人能过第5 个点,很期待常数帝出现
    • 复杂度 O ( α ( n ) + a n s ) O(\alpha(n)+\mathrm{ans}) O(α(n)+ans), 期望得分40
  • 算法四:
    • sort+树状数组
    • 把包子桶按可以使用的次数排序,逐一计算每个桶的时效时间(每次处理从上一次吃完某个桶到这一次吃完某个桶)
    • 树状数组记录桶的使用情况,可以用就是1,不能用就是0,利用树状数组可以计算前缀和(可以用线段树代替)
    • (开始处理从上一次吃完某个桶到这一次吃完某个桶)首先可以一圈一圈地减,这时走一圈的消耗是还剩下的桶的个数
    • 当当前桶的使用次数走不完一圈时,可以计算一个最远扩展范围,也就是它完全用完的那一时刻的所在位置。这个可以用二分求, log ⁡ 2 n \log^2n log2n 也是可过的,不过这个其实和求 K 大是一样的,直接在树状数组上二分就可以了(和在线段树上处理一个道理,掌握树状数组上的二分有利于深刻更理解地树状数组)。
    • 复杂度 O ( n log ⁡ 2 n ) O(n\log_2n) O(nlog2n),期望得分100
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值