量子计算与量子信息学习笔记(纯个人理解版)

量子计算与量子信息学习笔记(纯个人理解版)

量子力学:真正的黑色魔法演算。 ——阿尔伯特·爱因斯坦

什么是量子:微观世界中的离散单位,是某些物理量(例如电子)的最小不可分单位。
什么是量子力学:一个数学框架或物理理论构建的规则集。

预备知识

1、希尔伯特空间

向量空间:满足向量加法和标量乘法的非空集合 H \mathscr{H} H
向量加法: H + H → H \mathscr{H}+\mathscr{H}\rightarrow\mathscr{H} H+HH
标量乘法: C ⋅ H → H C\cdot\mathscr{H}\rightarrow\mathscr{H} CHH
内积空间:具有内积的向量空间 H \mathscr{H} H
(向量a和向量a的内积是a的模,向量a和向量b的内积是两个向量对应位置坐标相乘相加)
柯西序列:序列中的元素随着项数的增加,它们之间的距离逐渐趋近于零。
希尔伯特空间:一个完备的内积空间,即在这个内积空间内任何一个柯西序列的向量序列都有极限。

2、线性算子

将一个向量空间的元素映射到另一个向量空间的元素的映射,同时保持向量空间中的线性结构。具体的,对于线性算子 T T T,对于任意向量 v v v w w w,以及任意标量 c c c,都有一下两个性质:
加法 T ( v + w ) = T ( v ) + T ( w ) T(v+w)=T(v)+T(w) T(v+w)=T(v)+T(w)
齐次性 T ( c v ) = c T ( v ) T(cv)=cT(v) T(cv)=cT(v)

3、伴随算子与厄密共轭

在量子计算中,我们通常只对系统的离散时间演化进行研究,即幺正变换。对于任意算子 A ∈ L ( H ) A\in\mathscr{L}(\mathscr{H}) AL(H),在空间 H \mathscr{H} H中,都存在唯一的线性算子 A † A^{\dagger} A,满足: ( A ∣ φ ⟩ , ∣ ψ ⟩ ) = ( ∣ φ ⟩ , A † ∣ ψ ⟩ ) (A|\varphi\rangle,|\psi\rangle)=(|\varphi\rangle,A^\dagger|\psi\rangle) (Aφ,ψ⟩)=(φ,Aψ⟩)
对于所有的 ∣ φ ⟩ , ∣ ψ ⟩ ∈ H |\varphi\rangle,|\psi\rangle\in\mathscr{H} φ,ψH都成立,我们将算子 A † A^\dagger A称为 A A A伴随算子。如果 n n n维希尔伯特空间中的一个算子是通过矩阵 A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n来表示的,那么它的伴随矩阵可以通过 A A A转置共轭矩阵 ( A ∗ ) T (A^*)^T (A)T来表示:
A † = ( b i j ) n × n A ^ \dagger=(b_{ij})_{n\times n} A=(bij)n×n
其中对任意的 i , j = 1 , ⋅ ⋅ ⋅ , n i,j=1,···,n i,j=1,⋅⋅⋅,n,都有 b i j = a j i ∗ b_{ij}=a^{\ast}_{ji} bij=aji。(若 α = a + b i \alpha=a+bi α=a+bi,则 α ∗ = a − b i \alpha^*=a-bi α=abi

如果一个算子 A ∈ L ( H ) A\in\mathscr{L}(\mathscr{H}) AL(H)满足 A † = A A^\dagger=A A=A,那么称算子 A A A厄米的或自伴算子。物理学上也将厄米算子成为可观测量。

4、幺正变换

U ⊆ L ( H ) U\subseteq\mathscr{L}(\mathscr{H}) UL(H)是一个有界算子。如果U的伴随算子与它的逆相同,即
U † U = U U † = I H U^\dagger U=UU^\dagger=I_\mathscr{H} UU=UU=IH
那么称 U U U为幺正变换。

5、谱分解

向量空间 V V V上的任意正规算子 M M M V V V的某组标准正交基下是可对角化的。反之,任意可对角化的算子都是正规的。
方法:将算子对角化,首先需要计算该算子的本征值以及对应的本征态(需要归一化),然后对不同本征值与本征态的外积进行求和并记为谱分解的结果。

6、张量积

V V V W W W分别是 m m m维和 n n n维的向量空间,那么 V ⊗ W V \otimes W VW(读作 V V V张量 W W W)是一个 m n mn mn维的向量空间。例如,泡利矩阵 X X X Y Y Y的张量积是:
X ⊗ Y = [ 0 1 1 0 ] ⊗ [ 0 − i i 0 ] = [ 0 ⋅ Y 1 ⋅ Y 1 ⋅ Y 0 ⋅ Y ] = [ 0 0 0 − i 0 0 i 0 0 − i 0 0 i 0 0 0 ] X \otimes Y = \left [\begin {array}{c} 0 & 1 \\ 1 & 0 \\ \end {array} \right] \otimes \left [\begin {array}{c} 0 & -i \\ i & 0 \\ \end{array} \right] =\left [ \begin {array}{c} 0 \cdot Y & 1 \cdot Y \\ 1 \cdot Y & 0 \cdot Y \\ \end {array} \right] =\left [\begin {array}{c} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{array} \right] XY=[0110][0ii0]=[0Y1Y1Y0Y]= 000i00i00i00i000

7、量子态和经典态

量子态
1、在量子力学中,一个物理系统的状态由其波函数(量子态矢量)来描述。
2、量子态可能是叠加的,即系统处于多个可能状态的线性组合。
3、量子态具有不确定性,通常通过测量来确定系统的状态,测量结果是随机的。
4、量子态可以用量子力学的运算符来描述,如哈密顿算符,角动量算符等。
5、量子态的演化通过薛定谔方程或密度矩阵的演化方程来描述。
经典态
1、在经典力学中,物理系统的状态由其位置和动量等经典物理量来描述。
2、经典态具有确定性,即系统的状态在任何时间都是确定的,并且可通过经典物理定律来准确预测系统的行为。
3、经典态下的物理系统遵循牛顿力学或其他经典物理学原理。
4、经典态下的物理系统通常不涉及量子效应,如波粒二象性、量子纠缠等。

量子力学中的四个基本假设

第一基本假设

可以用希尔伯特空间来表示一个封闭(即孤立)的量子系统的空间状态空间,且这个系统中的纯态可以通过状态空间中的单位向量来描述。

最简单的量子力学系统是量子比特,量子比特是一个二维的状态空间,假设 ∣ 0 ⟩ 和 ∣ 1 ⟩ |0\rangle和|1\rangle ∣0∣1形成了这个状态空间的一组标准正交基,那么这个状态空间的任意向量都可以写成:
∣ ψ ⟩ = a ∣ 0 ⟩ + b ∣ 1 ⟩ |\psi\rangle=a|0\rangle+b|1\rangle ψ=a∣0+b∣1
其中a和b是任意的复数, ∣ ψ ⟩ |\psi\rangle ψ是一个单位向量的条件是 ⟨ ψ ∣ ψ ⟩ = 1 \langle\psi|\psi\rangle=1 ψψ=1,等价于 ∣ a ∣ 2 + ∣ b ∣ 2 = 1 |a|^2+|b|^2=1 a2+b2=1。条件 ⟨ ψ ∣ ψ ⟩ = 1 \langle\psi|\psi\rangle=1 ψψ=1通常成为状态向量的归一化条件。
任意的线性组合 ∑ i α i ∣ ψ i ⟩ \sum_i\alpha_i|\psi_i\rangle iαiψi可以理解为状态 ∣ ψ i ⟩ |\psi_i\rangle ψi以振幅 α i \alpha_i αi的叠加,例如,状态 ∣ 0 ⟩ − ∣ 1 ⟩ 2 \frac{|0\rangle-|1\rangle}{\sqrt{2}} 2 ∣0∣1表示为状态 ∣ 0 ⟩ |0\rangle ∣0 ∣ 1 ⟩ |1\rangle ∣1的叠加,其中 ∣ 0 ⟩ |0\rangle ∣0的振幅是 1 / 2 1/{\sqrt{2}} 1/2 ∣ 1 ⟩ |1\rangle ∣1的振幅是 − 1 / 2 -1/{\sqrt{2}} 1/2

第二基本假设

假设一个封闭的量子系统(即该系统和外部环境没有交互)在时间 t 1 t_1 t1 t 2 t_2 t2的状态分别为 ∣ ψ ⟩ |\psi\rangle ψ ∣ ψ ′ ⟩ |\psi'\rangle ψ,那么他们之间通过幺正算子 U U U相互关联,且该算子只取决于时间 t 1 t_1 t1 t 2 t_2 t2
∣ ψ ′ ⟩ = U ∣ ψ ⟩ |\psi'\rangle = U|\psi\rangle ψ=Uψ
一些常用的酉变换:
泡利矩阵
σ 0 ≡ I ≡ [ 1 0 0 1 ] \sigma_0\equiv I \equiv \left [ \begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right] σ0I[1001]
σ 1 ≡ σ x ≡ X ≡ [ 0 1 1 0 ] \sigma_1 \equiv\sigma_x \equiv X \equiv \left [ \begin{array}{c} 0 & 1 \\ 1 & 0 \end{array} \right] σ1σxX[0110]
σ 2 ≡ σ y ≡ Y ≡ [ 0 − i i 0 ] \sigma_2 \equiv\sigma_y \equiv Y \equiv \left [ \begin{array}{c} 0 & -i \\ i & 0 \end{array} \right] σ2σyY[0ii0]
σ 3 ≡ σ z ≡ Z ≡ [ 1 0 0 − 1 ] \sigma_3 \equiv\sigma_z \equiv Z \equiv \left [ \begin{array}{c} 1 & 0 \\ 0 & -1 \end{array} \right] σ3σzZ[1001]
其它常用量子门
哈达玛门 : 1 2 [ 1 1 1 − 1 ] 哈达玛门 : \frac{1}{\sqrt{2}} \left [ \begin{array}{c} 1 & 1 \\ 1 & -1 \end{array} \right] 哈达玛门:2 1[1111]
相位门 : [ 1 0 0 i ] 相位门: \left [ \begin{array}{c} 1 & 0 \\ 0 & i \end{array} \right] 相位门:[100i]
π / 8 门 : [ 1 0 0 e i π / 4 ] \pi/8门: \left [ \begin{array}{c} 1 & 0 \\ 0 & e^{i\pi/4} \end{array} \right] π/8:[100e/4]
受控非门 : [ 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 ] 受控非门: \left [ \begin{array}{c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right] 受控非门: 1000010000010010

用薛定谔方程描述封闭量子系统中态的演化:
i ℏ d ∣ ψ ⟩ d t = H ∣ ψ ⟩ i \hbar \frac{d| \psi \rangle}{dt}=H| \psi \rangle idtdψ=Hψ
其中, ℏ \hbar 为普朗克常数, H H H称为封闭系统哈密顿量的固定厄米算子。因为哈密顿量是一个厄米算子,所以它有谱分解
H = ∑ E E ∣ E ⟩ ⟨ E ∣ H = \sum_E E |E\rangle \langle E| H=EEEE
其中它的特征值为E并且相应的特征向量为 ∣ E ⟩ | E \rangle E,状态 ∣ E ⟩ |E \rangle E一般被称为能量本征态,有时也称为稳态, E E E是状态 ∣ E ⟩ |E \rangle E的能量。最低的能量称为系统的基态能量,相应的能量本征态(或本征空间)称为基态。

第三基本假设

对状态空间为 H \mathscr{H} H的量子系统进行的测量可以通过一系列算子 { M m } ⊆ L ( H ) \{M_m\}\subseteq\mathscr{L}(\mathscr{H}) {Mm}L(H)来刻画,且这些算子满足归一化条件:
∑ m M m † M m = I H \sum_mM_m^{\dagger}M_m=I_{\mathscr{H}} mMmMm=IH
指标 m m m表示在实验中可能出现的测量结果。如果在测量前量子系统的最新状态是 ∣ ψ ⟩ | \psi \rangle ψ,那么测量结果是m的概率为:
p ( m ) = ⟨ ψ ∣ M m † M m ∣ ψ ⟩ p(m)=\langle \psi | M_m^\dagger M_m| \psi \rangle p(m)=ψMmMmψ
测量后系统的状态为
M m ∣ ψ ⟩ ⟨ ψ ∣ M m † M m ∣ ψ ⟩ \frac{M_m | \psi \rangle}{\sqrt{ \langle \psi | M_m^\dagger M_m | \psi \rangle}} ψMmMmψ Mmψ

串联的测量等于单次测量

假设 { L l } \{ L_l \} {Ll} { M m } \{ M_m \} {Mm}是两组测量算子,那么一个经过测量算子 { L l } \{L_l\} {Ll}测量后,经过测量算子 { M m } \{ M_m \} {Mm}测量的顺次测量,在物理上等价于一个由测量算子 { N l m } \{N_{lm}\} {Nlm}定义的测量,其中 N l m ≡ M m L l N_{lm} \equiv M_m L_l NlmMmLl

第四基本假设

复合量子系统的状态空间是其组成部分的状态空间的张量积。例如,如果系统编号为1到 n n n,且系统 i i i的状态为 ∣ ψ ⟩ |\psi \rangle ψ,则整个系统的联合状态是 ∣ ψ 1 ⟩ ⊗ ∣ ψ 2 ⟩ ⊗ ⋅ ⋅ ⋅ ⊗ ∣ ψ n ⟩ | \psi_1 \rangle \otimes | \psi_2 \rangle \otimes ··· \otimes| \psi_n \rangle ψ1ψ2⋅⋅⋅ψn

叠加原理

如果 ∣ x ⟩ |x \rangle x ∣ y ⟩ |y \rangle y是一个量子系统的两种状态,那么任何叠加 α ∣ x ⟩ + β ∣ y ⟩ \alpha|x\rangle + \beta|y \rangle αx+βy也是量子系统的一个允许的状态,其中 ∣ α ∣ 2 + ∣ β ∣ 2 = 1 |\alpha|^2 + |\beta|^2=1 α2+β2=1

纠缠态

考虑两量子比特态: ∣ ψ ⟩ = ∣ 00 ⟩ + ∣ 11 ⟩ 2 | \psi \rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}} ψ=2 ∣00+∣11
具有一个显著特性,即不存在但量子比特 ∣ a ⟩ |a\rangle a ∣ b ⟩ |b\rangle b,使得 ∣ ψ ⟩ = ∣ a ⟩ ∣ b ⟩ | \psi \rangle = |a \rangle |b \rangle ψ=ab。具有这种性质(不能写成其分系统状态的乘积)的复合系统的状态是一个纠缠态(entangled state)。

四个基本假设总结

假设1通过指定如何描述一个鼓励量子系统的状态来设定量子力学的研究范畴。
假设2告诉我们封闭量子系统的动态演化是由薛定谔方程,也就是酉变化来描述。
假设3告诉我们如何通过规定的测量算子从量子系统中提取信息。
假设4告诉我们如何把不同量子系统的状态空间相结合来描述复合系统。

  • 25
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
量子计算量子信息原理是一本探讨量子计算量子信息的重要教材。量子计算是一种新兴的计算模型,利用量子力学的原理来进行计算。与传统的经典计算方式不同,量子计算利用量子态的叠加和纠缠特性,可以处理更复杂的问题。 这本教材首先介绍了量子力学的基本原理,如量子态、测量和纠缠等概念。然后,书中详细讨论了量子比特的表示和操作,包括单量子比特和多量子比特的系统。在此基础上,教材进一步讨论了量子门操作和量子算法的设计原理。 量子信息是利用量子系统携带和传递信息的领域。量子信息原理部分介绍了量子通信的基本原理和技术,如量子纠错码、量子密钥分发和量子隐形传态等。此外,书中还讨论了量子计算量子通信的关系,比如量子电路和量子通信网络的设计。 这本教材对于理解量子计算量子信息的基本理论和方法非常有帮助。它深入浅出地解释了量子计算的概念和原理,并通过实例和案例,展示了量子计算量子信息在不同领域的应用。无论是学生、研究人员还是工程师,都可以通过阅读此书,深入理解量子计算量子信息的前沿知识。 总之,《量子计算量子信息原理》是一本权威且有效的教材,对于学习和研究量子计算量子信息领域的人士来说,具有重要的参考价值。它通过系统地介绍量子计算量子信息的基本原理和技术,帮助读者建立起对这一新兴领域的深入理解

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寻常人家_二一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值