子域,代数闭域,代数闭包

转载自:

https://baike.baidu.com/item/%E5%AD%90%E5%9F%9F/5873902?fr=aladdin

https://baike.baidu.com/item/%E4%BB%A3%E6%95%B0%E9%97%AD%E5%9F%9F/8960951?fr=aladdin

https://baike.baidu.com/item/%E4%BB%A3%E6%95%B0%E9%97%AD%E5%8C%85/18917783

子域

设F是域P的非空子集,如果P的加法和乘法可看作F的加法和乖法,且对于这两个代数运算,F也构成一个域,则称F为P的一个子域或子体。例如,有理数域是实数域的一个子域, 而实数域又是复数域的一个子域。

定义

  

是一个域,K是F的一个非空子集,如果

  

,且

  

是域,则称域K是域F的一个子域,域F是域K的一个扩域。

例1 全体有理数的集合Q、全体实数的集合R以及全体复数的集合C关于普通的加法和乘法均形成域。另外,对于任意的素数p,

  

关于普通的加法和乘法也形成域。而且Q是

  

的子域,

  

是R的子域,R是C的子域。

容易证明KF的子域当且仅当

  

  

同时成立。如果一个域F'与另一个域F的某个子域K同构,则可以将域F'与域K等同,从而将域F'视为域F的一个子域。

 

代数闭域

F称为代数闭域,如果对于任何系数属于F的一元多项式f(x),f(x)在F中至少有一个

代数闭域是一类重要的域。指次数大于1的多项式均可分解的域。若域K上多项式环K[x]中的每一个次数大于零的多项式在K中都有一个根,则称K为代数闭域。从而在K[x]中每个次数大于零的多项式能分解为一次因式之积。1910年,施泰尼茨(Steinitz,E.)在他发表的基本论文中首先证明:每个域都可以经代数扩张得到一个代数闭域。

例子

举例明之,实数域并非代数闭域,因为下列实系数多项式无实根: [1] 

同理可证有理数域非代数闭域。此外,有限域也不是代数闭域,因为若

  

列出 F的所有元素,则下列多项式在F中没有根:

反之,复数域则是代数闭域;这是代数基本定理的内容。另一个代数闭域之例子是代数数域。

 

代数闭包

设E/F为代数扩张,且E是代数闭域,则称EF的一个代数闭包。可以视之为包含F的最小的代数闭域。

代数闭包(algebraic closure)是一个域的最大代数扩域。若域F的代数扩域Ω为代数闭域,则称Ω为域F的一个代数闭包。一个域F的代数闭包总是存在的,并且在F同构意义下惟一。这个基本定理来自施泰尼茨(Steinitz,E.)。设K是域F的扩域,在K中F上代数元的全体组成的子域A称为F在K内的代数闭包,它是F在K内的最大代数扩域。特别地,若F=A,则称F在K内是代数闭的。

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值